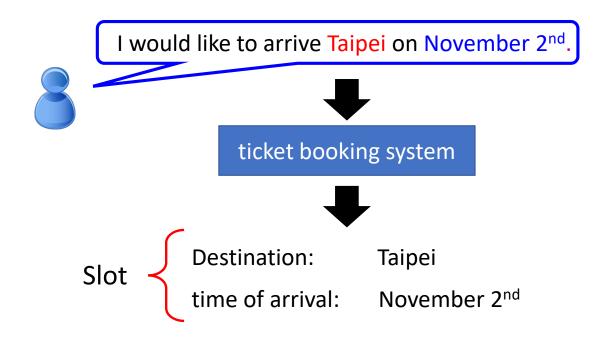
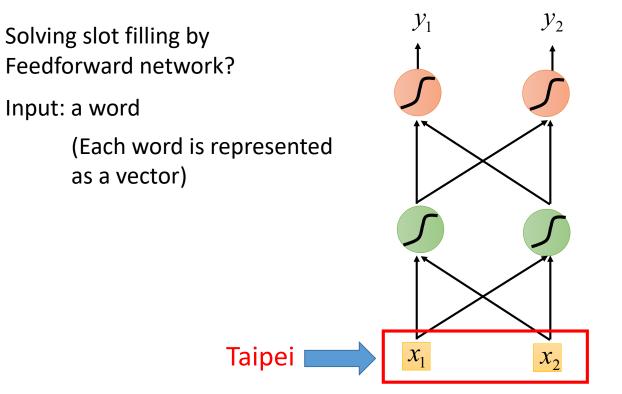
Recurrent Neural Network (RNN)

Example Application

• Slot Filling



Example Application

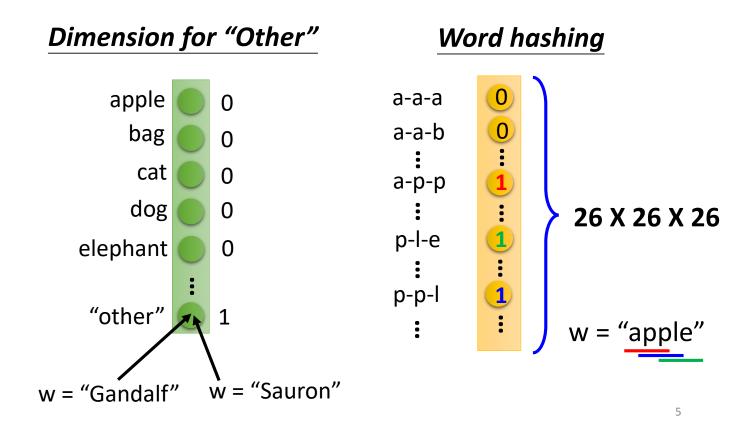


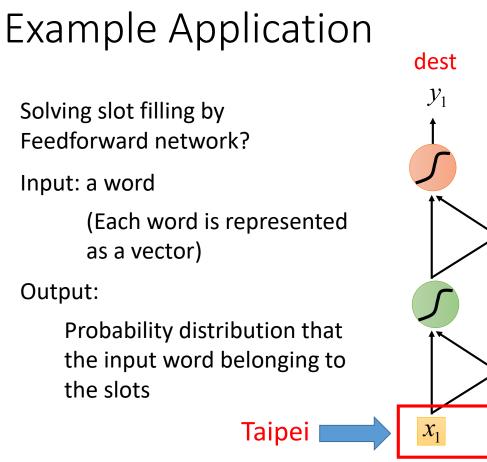
1-of-N encoding

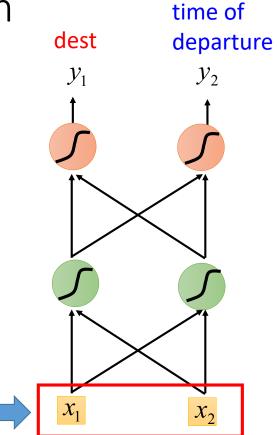
How to represent each word as a vector?

1-of-N Encoding lexicon = {apple, bag, cat, dog, elephant}	
The vector is lexicon size.	apple = [1 0 0 0 0]
Each dimension corresponds	bag = [0 1 0 0 0]
to a word in the lexicon	cat = [0 0 1 0 0]
The dimension for the word	dog = [0 0 0 1 0]
is 1, and others are 0	$elephant = [0 \ 0 \ 0 \ 0 \ 1]$

Beyond 1-of-N encoding

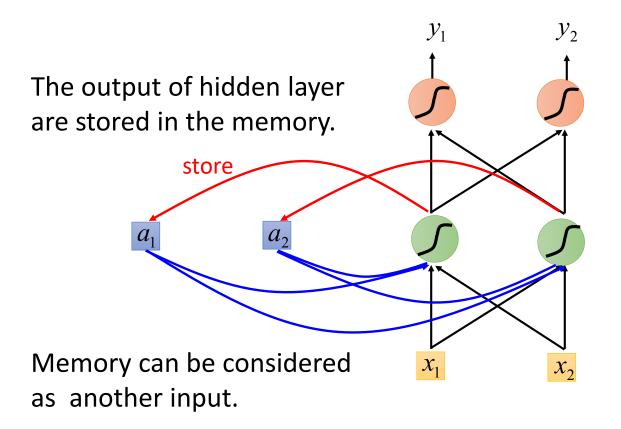


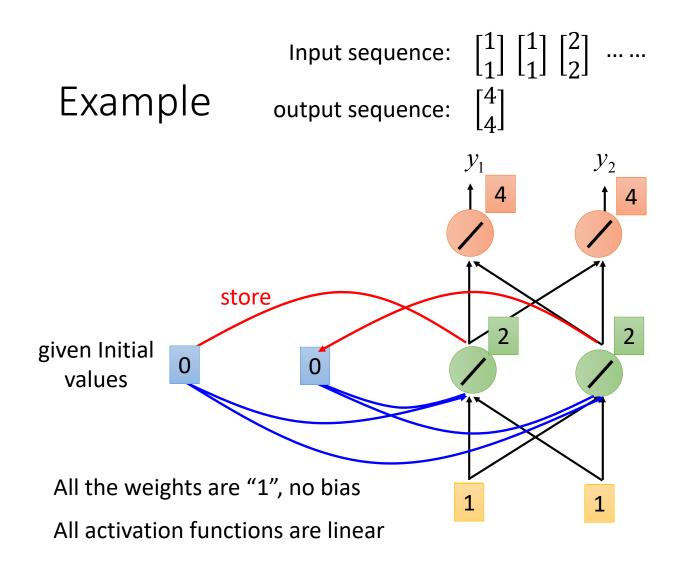


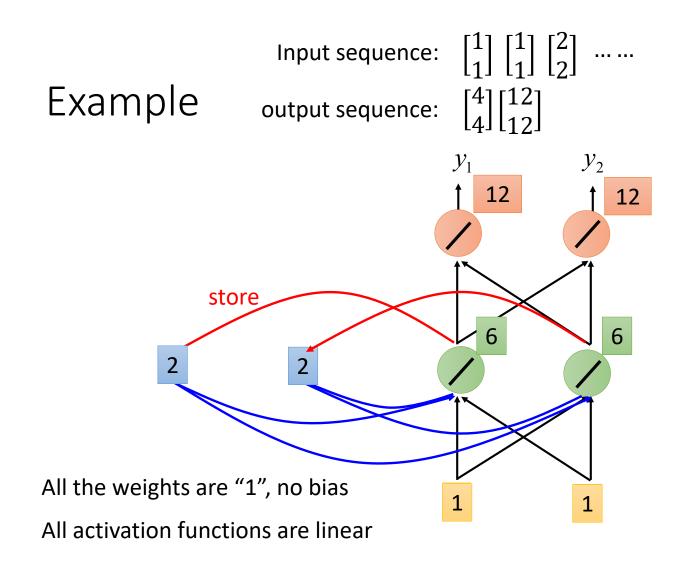


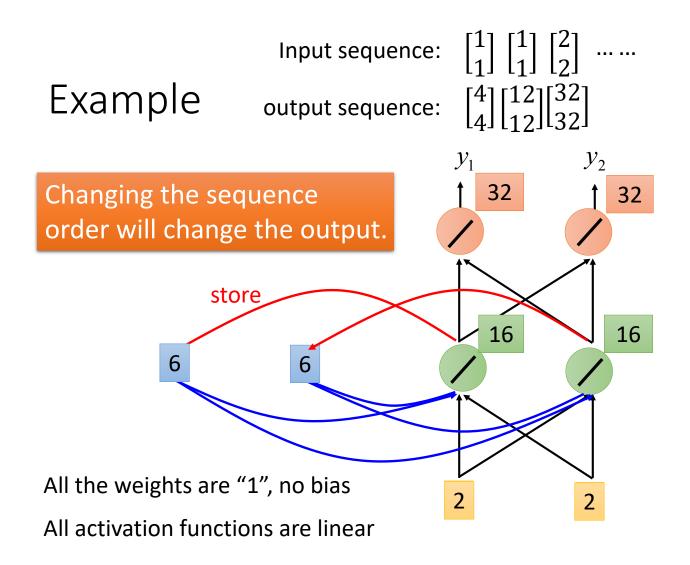


Recurrent Neural Network (RNN)

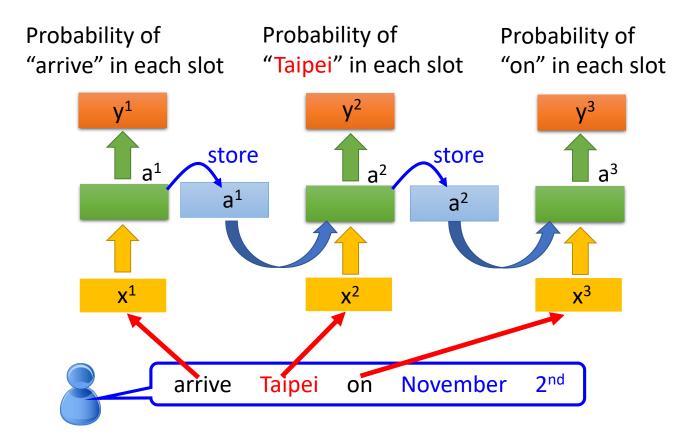


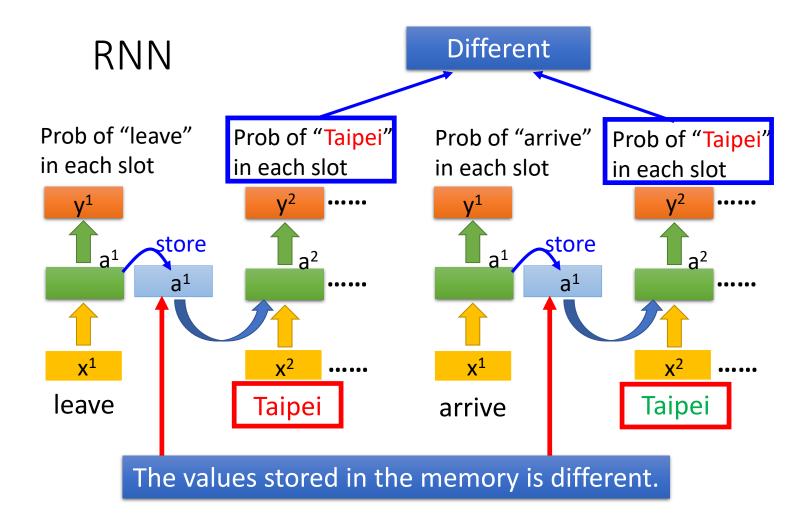




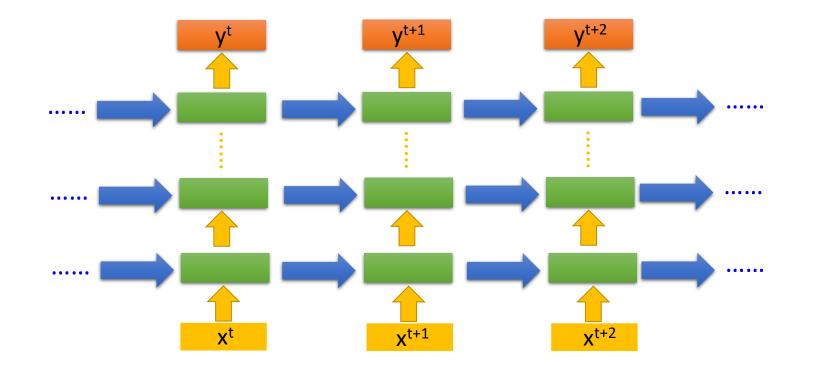


RNN The same network is used again and again.

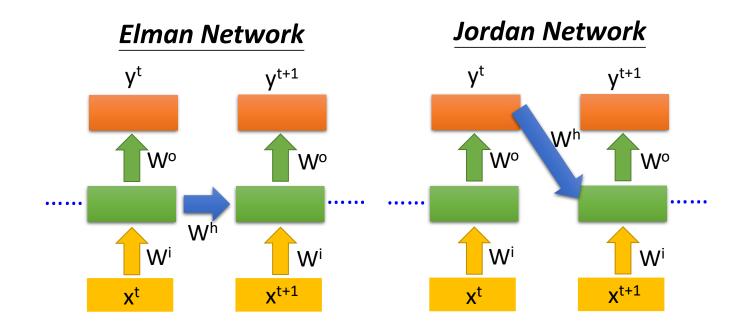




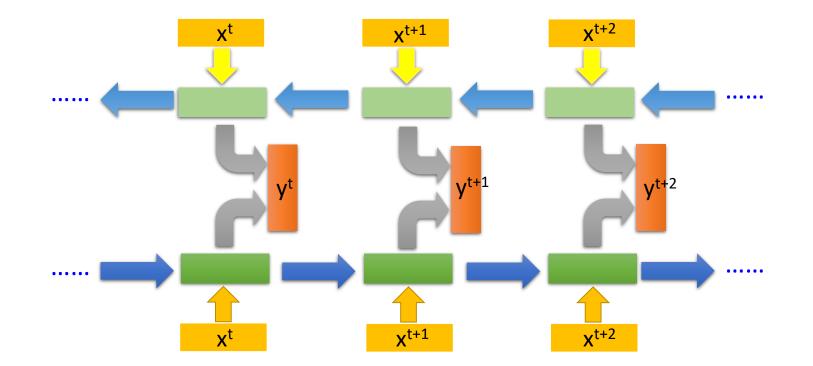
Of course it can be deep ...

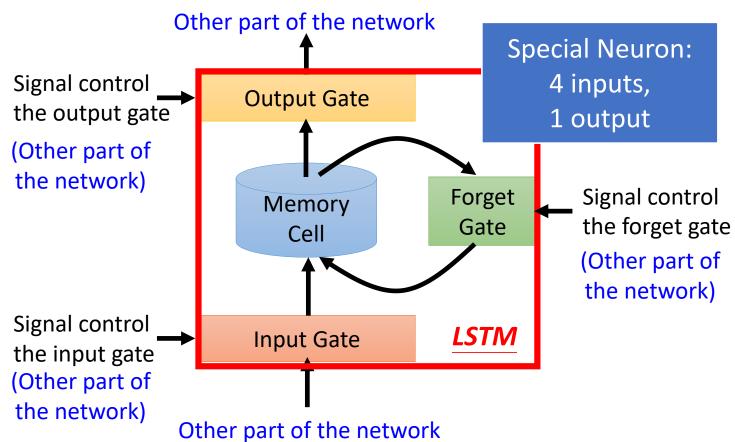


Elman Network & Jordan Network

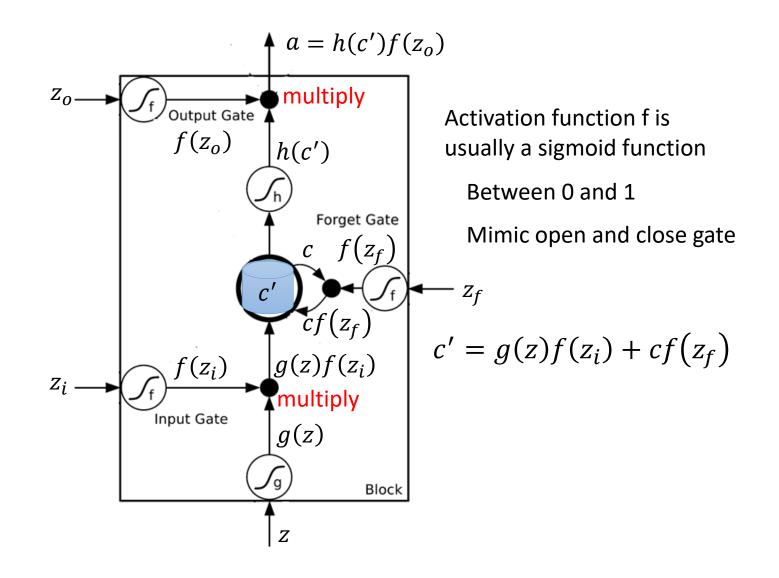


Bidirectional RNN

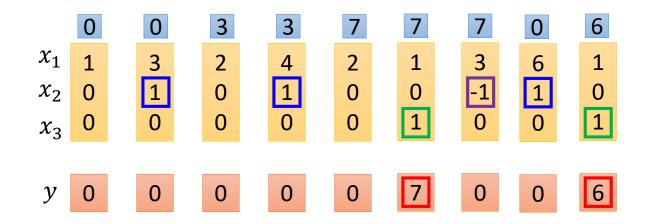




Long Short-term Memory (LSTM)



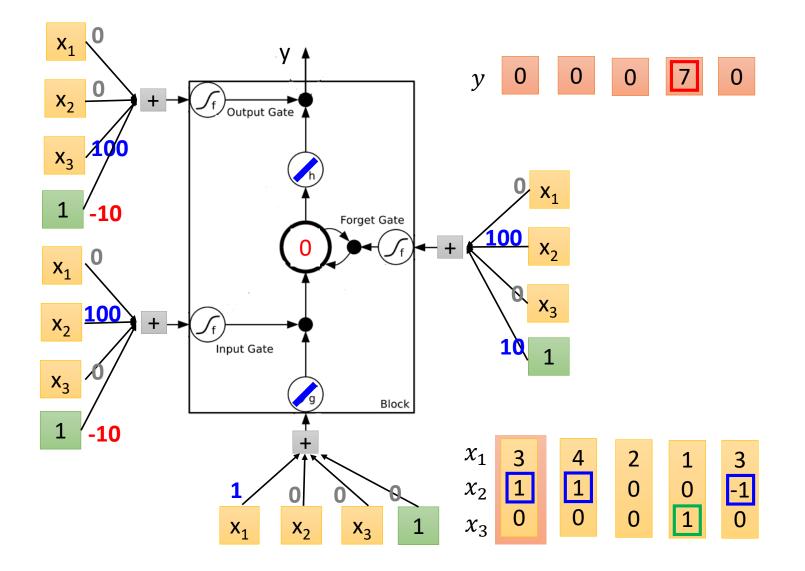
LSTM - Example

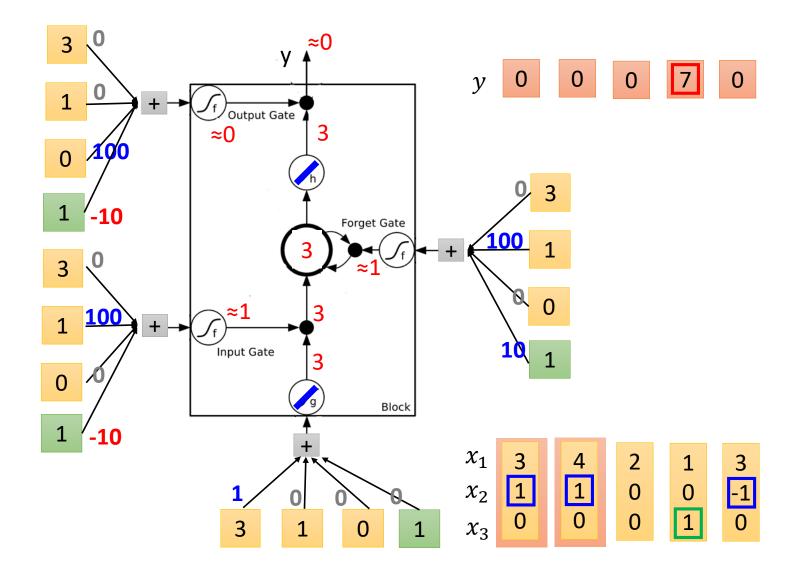


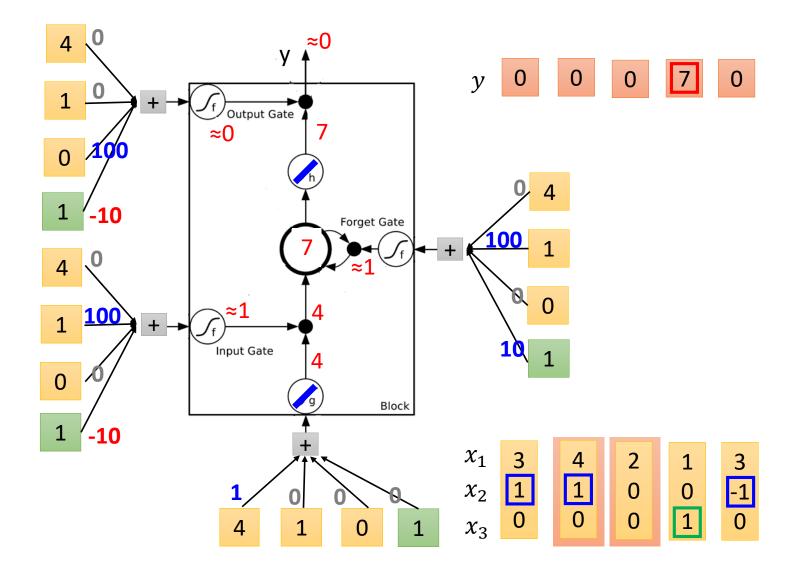
When $x_2 = 1$, add the numbers of x_1 into the memory

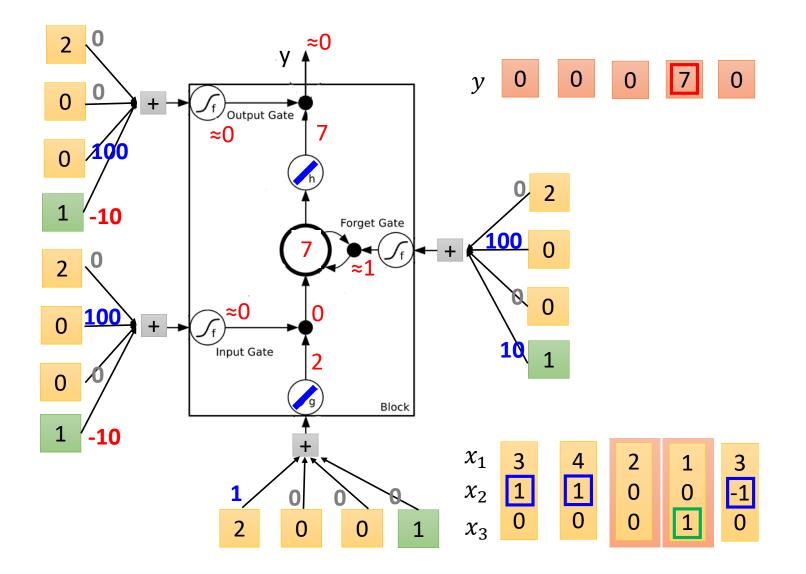
When $x_2 = -1$, reset the memory

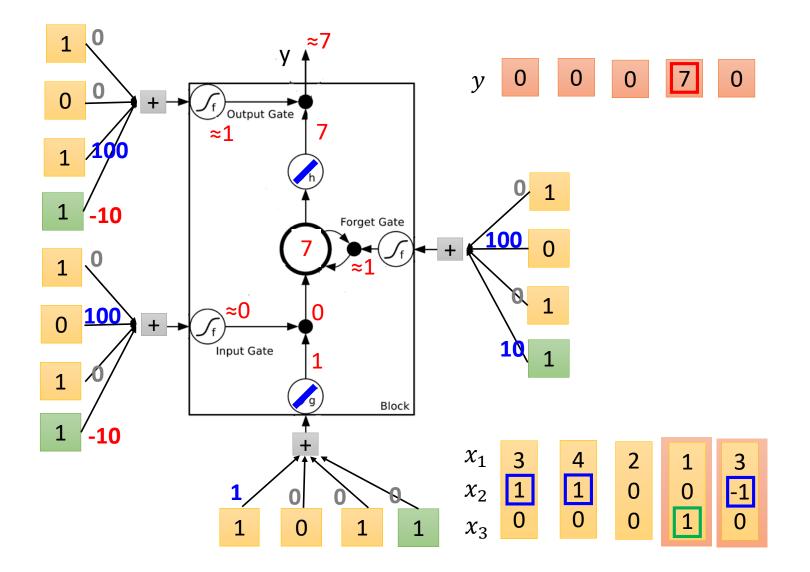
When $x_3 = 1$, output the number in the memory.

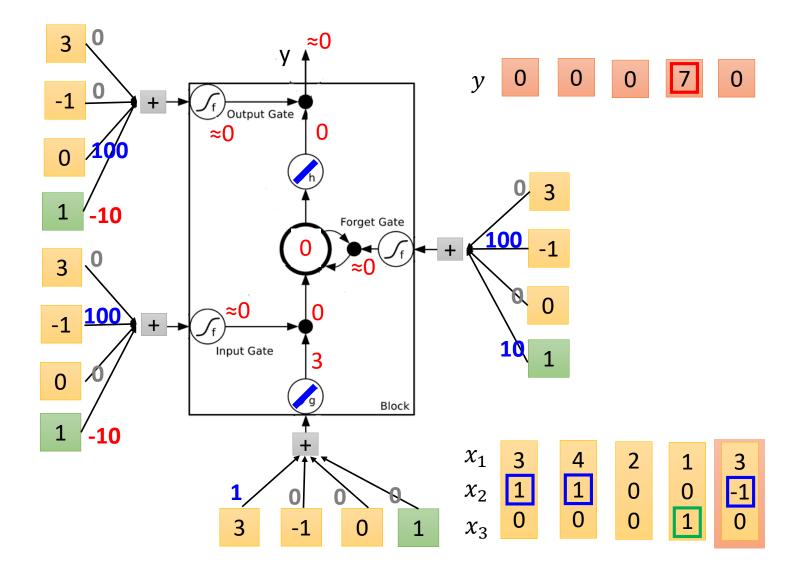






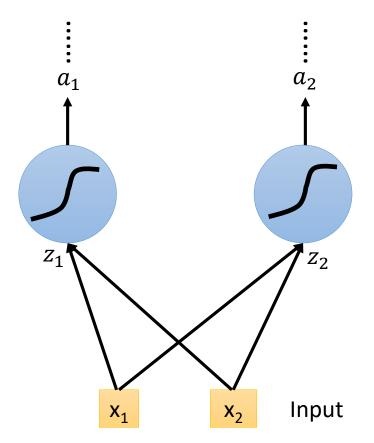


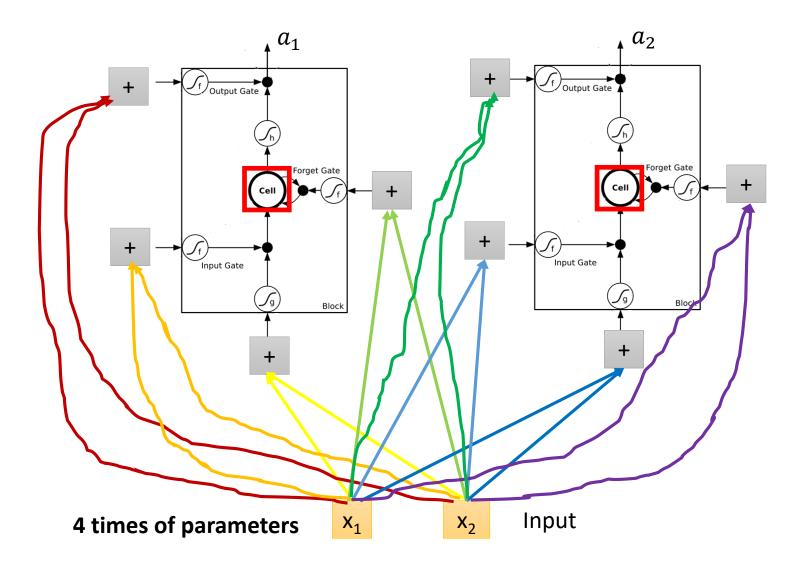


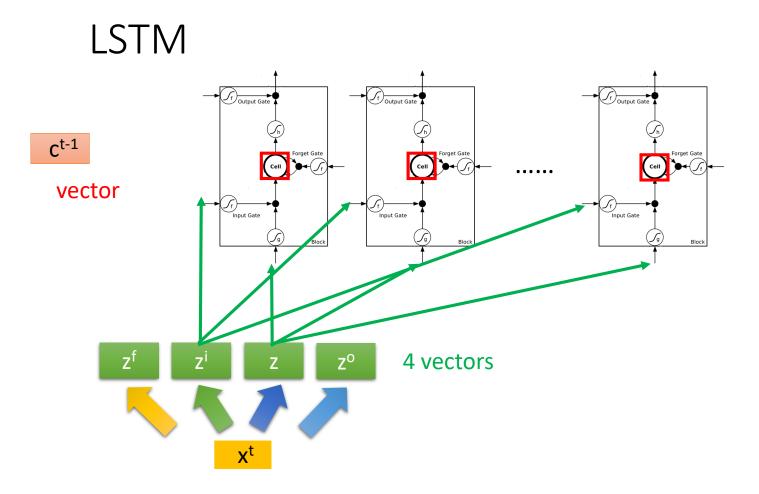


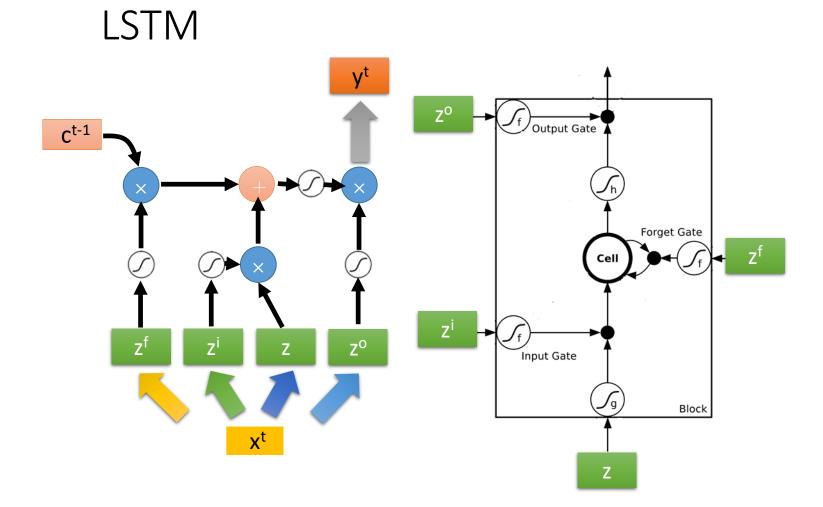
Original Network:

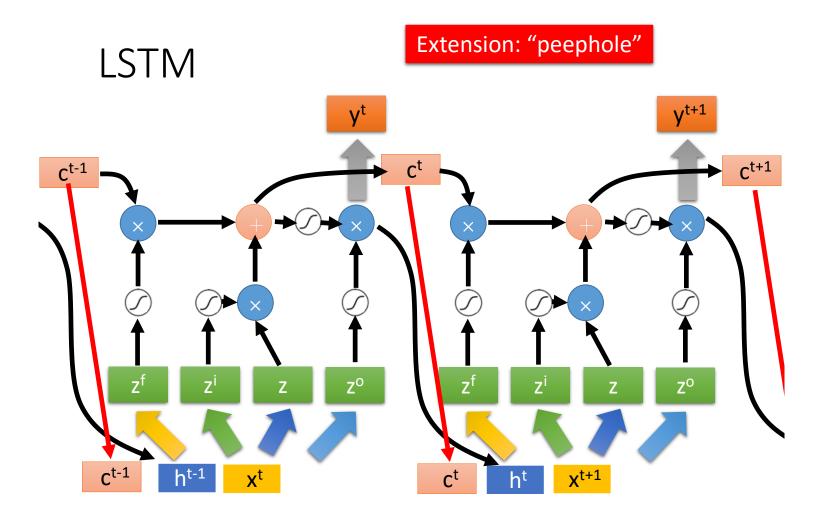
Simply replace the neurons with LSTM

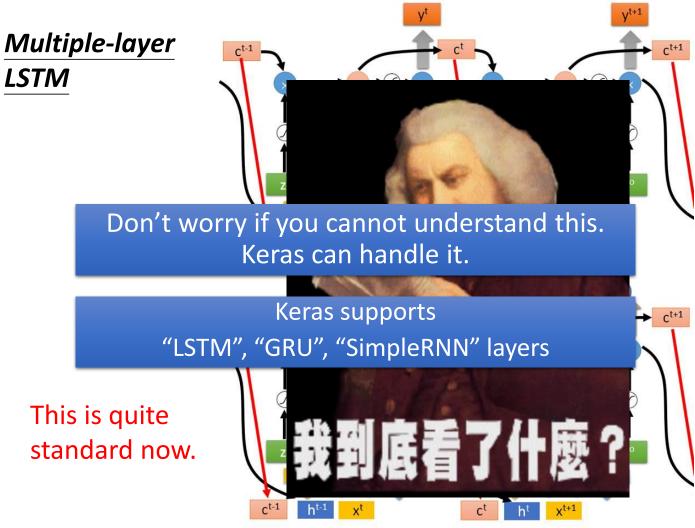






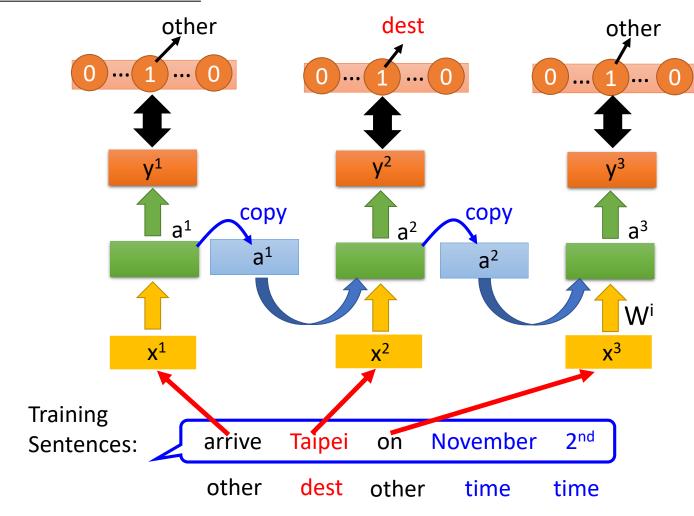


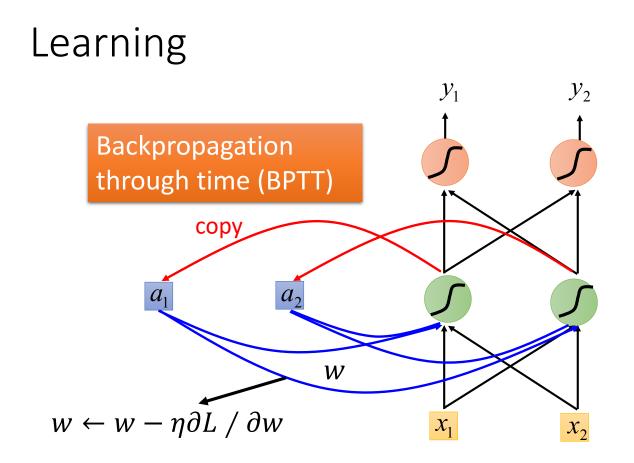




https://img.komicolle.org/2015-09-20/src/14426967627131.gif

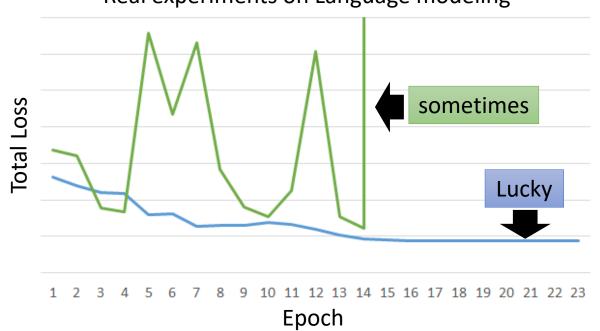
Learning Target





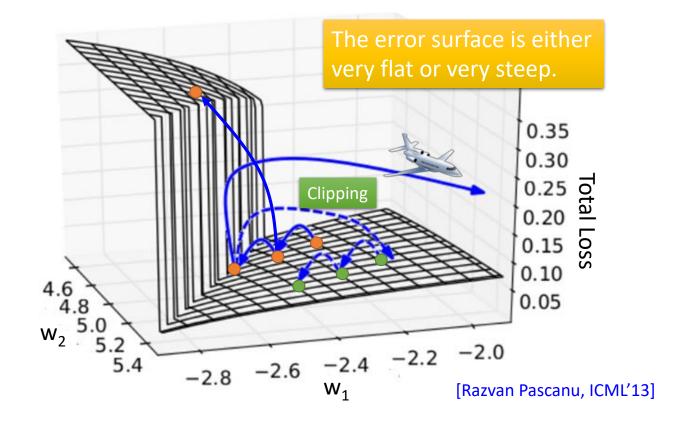
Unfortunately

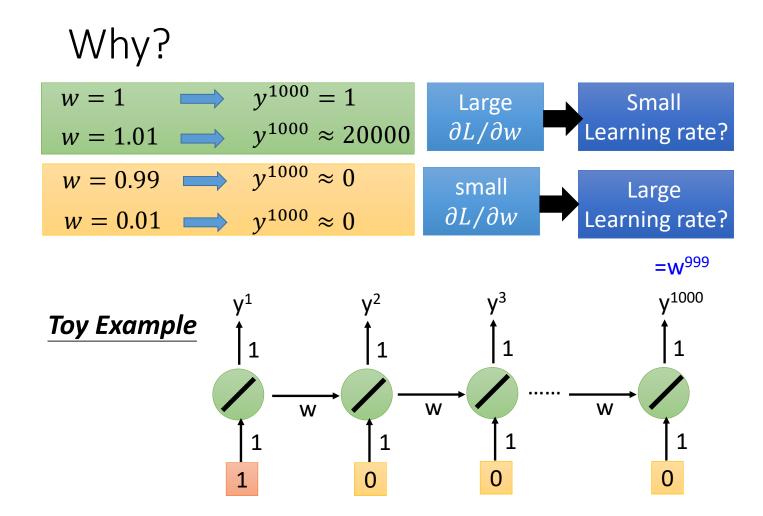
• RNN-based network is not always easy to learn



Real experiments on Language modeling

The error surface is rough.



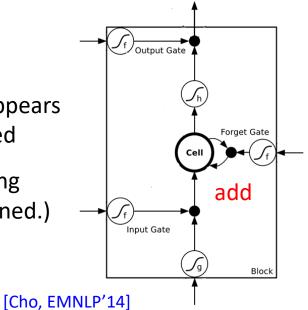


Helpful Techniques

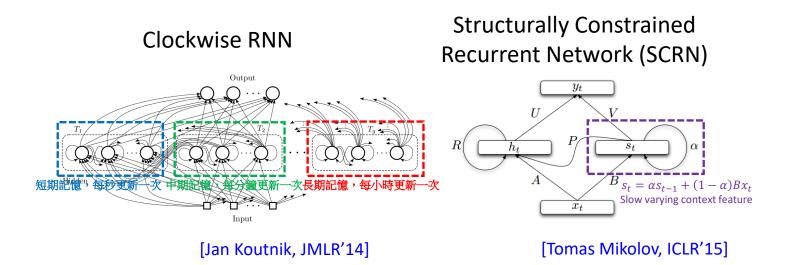
• Long Short-term Memory (LSTM)

- Can deal with gradient vanishing (not gradient explode)
- Memory and input are added
- The influence never disappears unless forget gate is closed
 - No Gradient vanishing (If forget gate is opened.)

Gated Recurrent Unit (GRU): simpler than LSTM



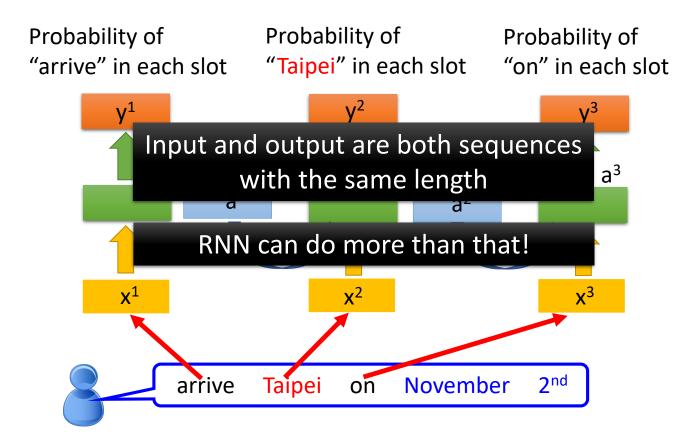
Helpful Techniques



Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V. Le, arXiv'15]

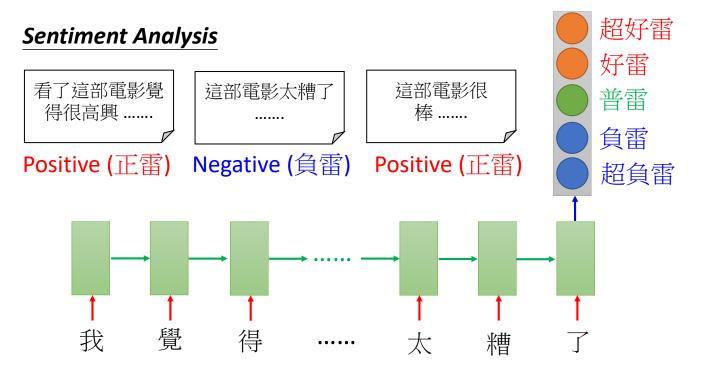
> Outperform or be comparable with LSTM in 4 different tasks

More Applications



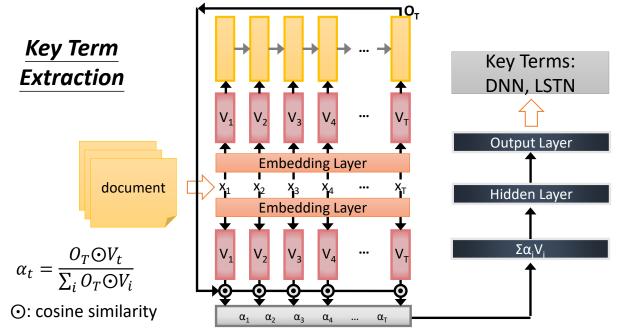
Many to one

• Input is a vector sequence, but output is only one vector



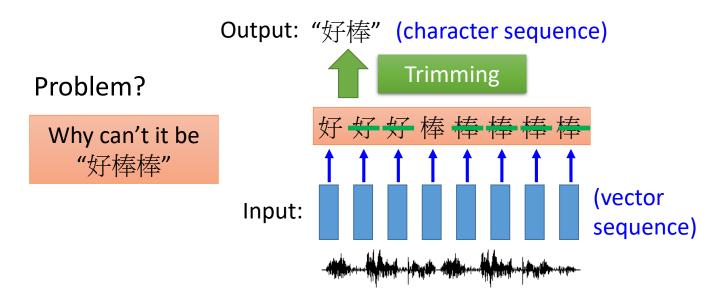
Many to one

• Input is a vector sequence, but output is only one vector

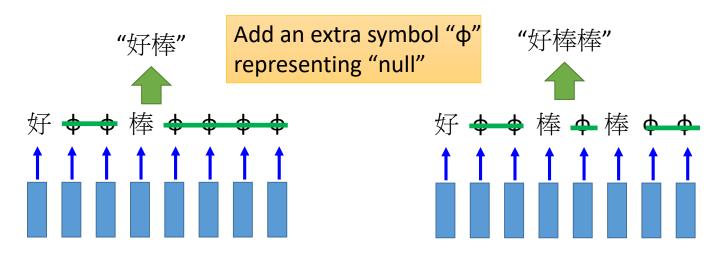


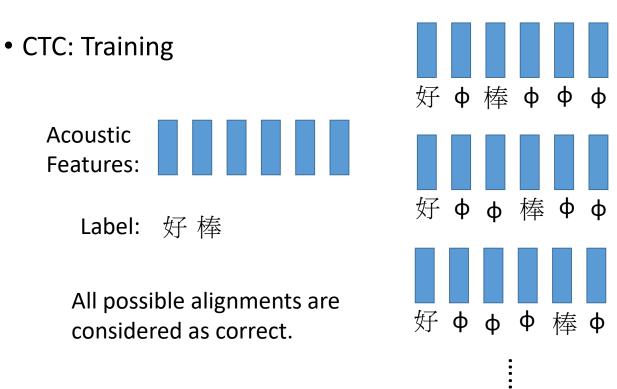
Sheng-syun Shen, Hung-Yi Lee, "Neural Attention Models for Sequence Classification: Analysis and Application to Key Term Extraction and Dialogue Act Detection", the 17th Annual Conference of the International Speech Communication Association (INTERSPEECH'16), San Francisco, Sept. 2016

- Both input and output are both sequences, <u>but the output</u> is shorter.
 - E.g. Speech Recognition

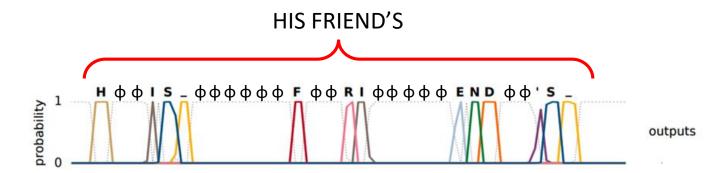


- Both input and output are both sequences, <u>but the output</u> is shorter.
- Connectionist Temporal Classification (CTC) [Alex Graves, ICML'06][Alex Graves, ICML'14][Haşim Sak, Interspeech'15][Jie Li, Interspeech'15][Andrew Senior, ASRU'15]



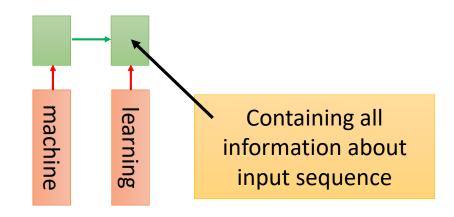


• CTC: example

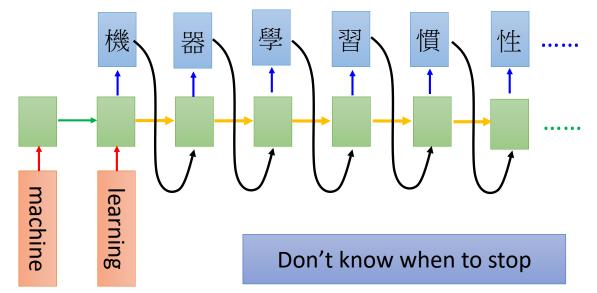


Graves, Alex, and Navdeep Jaitly. "Towards end-to-end speech recognition with recurrent neural networks." *Proceedings of the 31st International Conference on Machine Learning (ICML-14)*. 2014.

- Both input and output are both sequences <u>with different</u> lengths. → Sequence to sequence learning
 - E.g. *Machine Translation* (machine learning→機器學習)

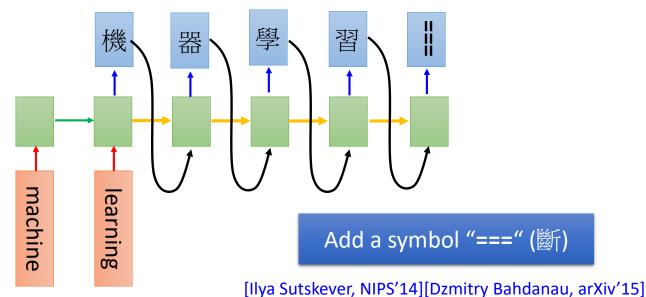


- Both input and output are both sequences <u>with different</u> lengths. → Sequence to sequence learning
 - E.g. Machine Translation (machine learning→機器學習)

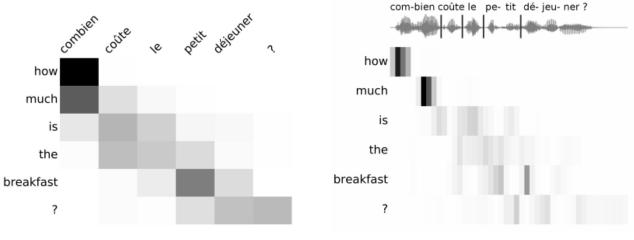


接龍推文是ptt在推文中的一種趣味玩法,與推齊有些類似但又有所不同, 是指在推文中接續上一樓的字句,而推出連續的意思。該類玩法確切起 源已不可知(鄉民百科)

- Both input and output are both sequences <u>with different</u> lengths. → Sequence to sequence learning
 - E.g. Machine Translation (machine learning→機器學習)



- Both input and output are both sequences <u>with different</u> lengths. → Sequence to sequence learning
 - E.g. *Machine Translation* (machine learning→機器學習)



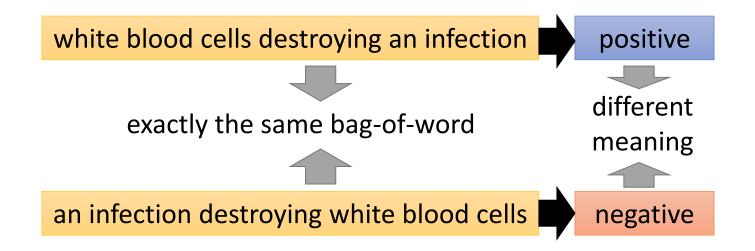
(a) Machine translation alignment

(b) Speech translation alignment

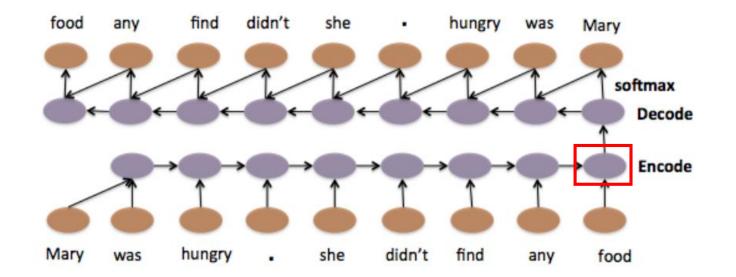
Figure 1: Alignments performed by the attention model during training

Sequence-to-sequence Auto-encoder - Text

• To understand the meaning of a word sequence, the order of the words can not be ignored.

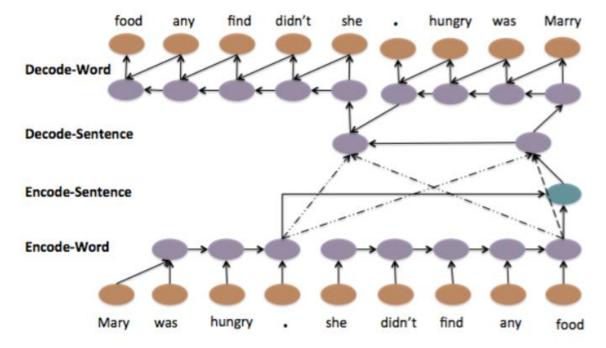


Sequence-to-sequence Auto-encoder - Text

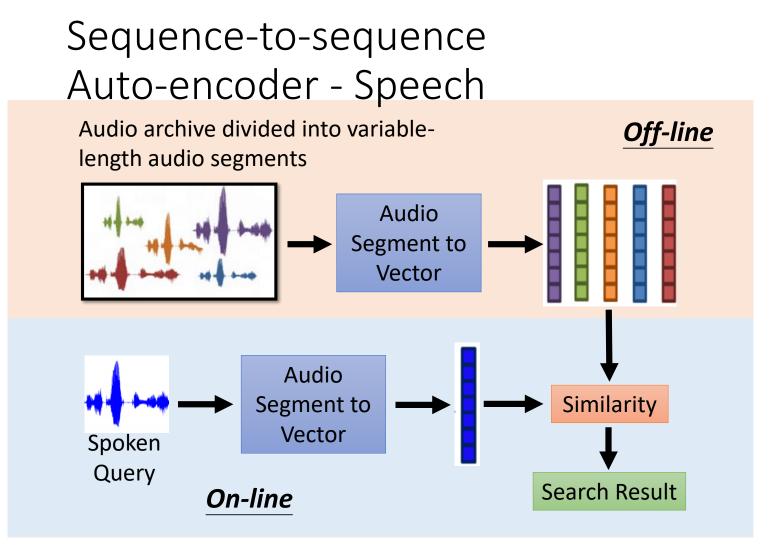


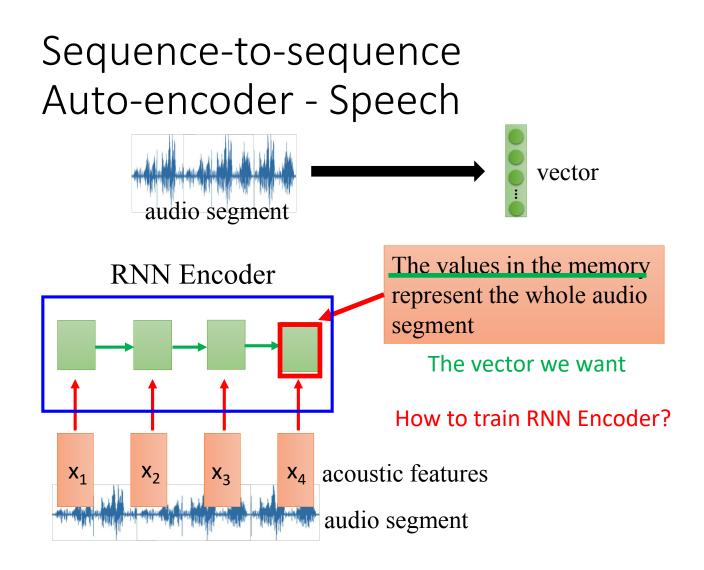
Li, Jiwei, Minh-Thang Luong, and Dan Jurafsky. "A hierarchical neural autoencoder for paragraphs and documents." *arXiv preprint arXiv:1506.01057*(2015).

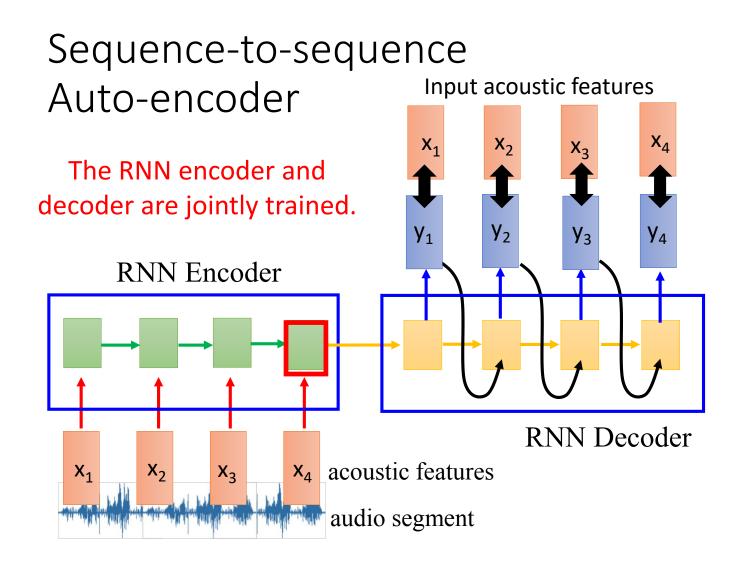
Sequence-to-sequence Auto-encoder - Text



Li, Jiwei, Minh-Thang Luong, and Dan Jurafsky. "A hierarchical neural autoencoder for paragraphs and documents." *arXiv preprint arXiv:1506.01057*(2015).

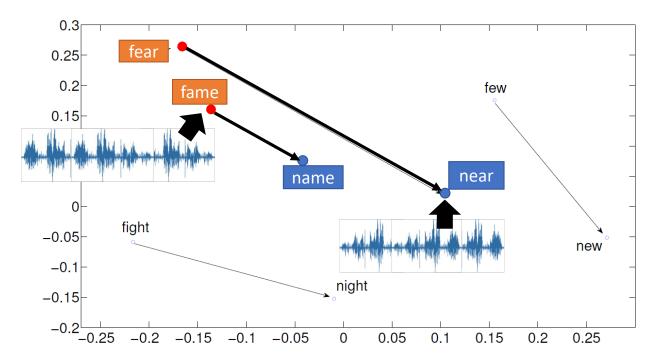




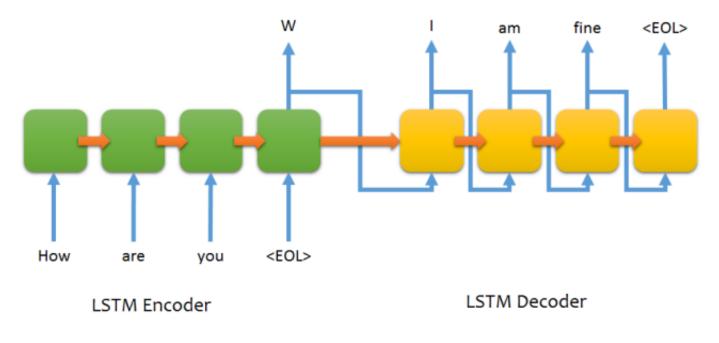


Sequence-to-sequence Auto-encoder - Speech

• Visualizing embedding vectors of the words

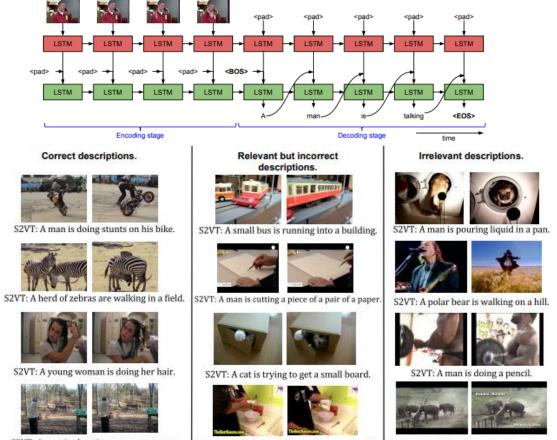


Demo: Chat-bot



電視影集 (~40,000 sentences)、美國總統大選辯論

Video Caption Generation

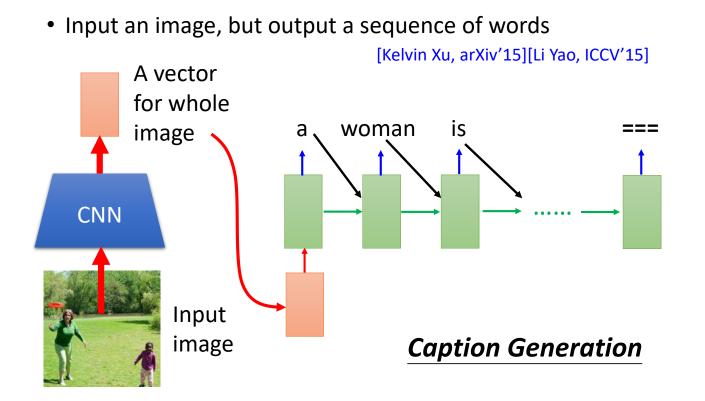


S2VT: A man is shooting a gun at a target.

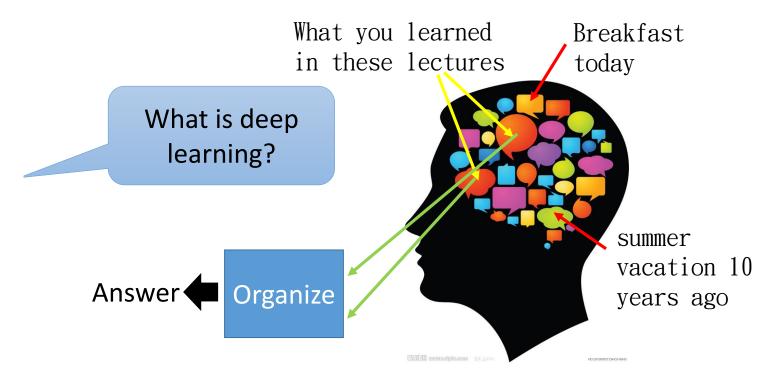
S2VT: A man is spreading butter on a tortilla. S2VT: A black clip to walking through a path.

Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney, Trevor Darrell, and Kate Saenko. 2015. Sequence to Sequence -- Video to Text. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) (ICCV '15). IEEE Computer Society, Washington, DC, USA, 4534-4542.

Demo: Image Caption Generation

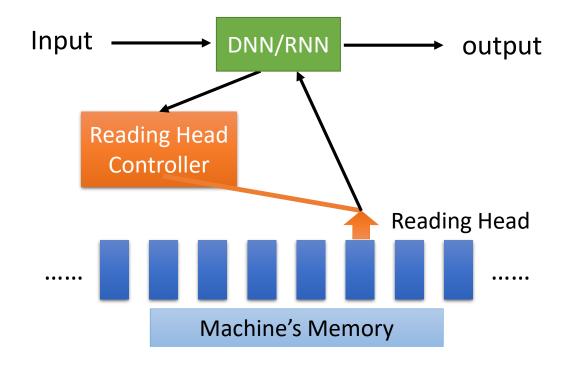


Attention-based Model



http://henrylo1605.blogspot.tw/2015/05/blog-post_56.html

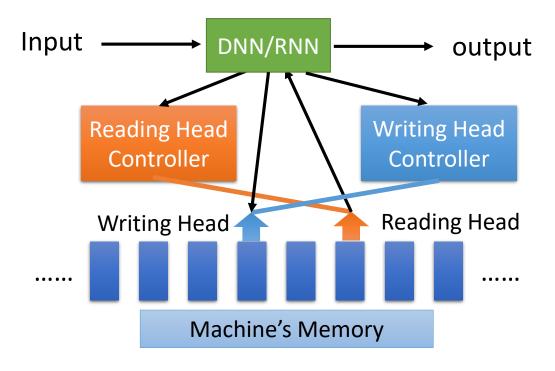
Attention-based Model



Ref:

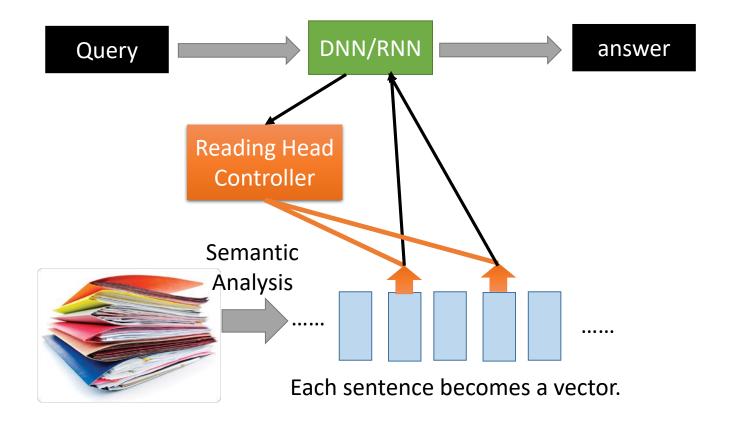
http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/Attain%20(v3).e cm.mp4/index.html

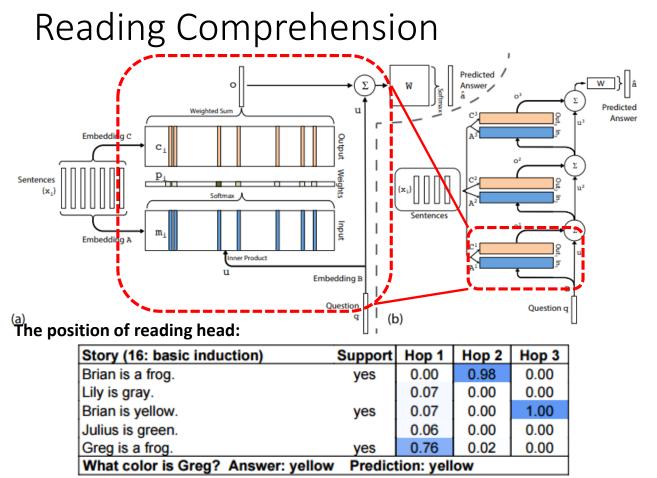
Attention-based Model v2



Neural Turing Machine

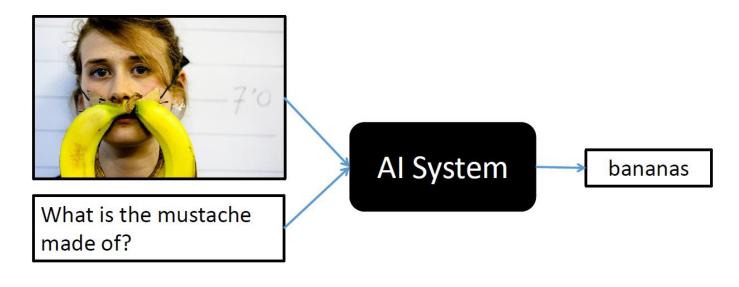
Reading Comprehension





End-To-End Memory Networks. S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. NIPS, 2015. **Keras example:** https://github.com/fchollet/keras/blob/master/examples/babi_memnn.py

Visual Question Answering



source: http://visualqa.org/

Visual Question Answering

