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Unsupervised Learning

e Dimension Reduction * Generation (4 H)
(B2 A )
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Dimension Reduction
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Dimension Reduction

* In MNIST, a digit is 28 x 28 dims.
* Most 28 x 28 dim vectors are not digits
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Clustering e (1)
%
0
Cluster 1
* K-means

e Clustering X = {x?1,---,x™,---,xN} into K clusters

e Initialize cluster center ¢!, i=1,2, ... K (K random x™ from X)
* Repeat

e Forallx™inX: b}
0 Otherwise

« Updating all ¢*: ]
P & c‘=2b}1x"/2b}1
n n

{1 x™ is most “close” to ¢!



Clustering

* Hierarchical Agglomerative Clustering (HAC)
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Distributed Representation
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* Clustering: an object must s -
belong to one cluster | (LA
MRS .
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Distributed Representation

vector x »Mvector Z
(High Dim) (Low Dim)
e Feature selection X2
Select x,
X1

* Principle component analysis (PCA)
[Bishop, Chapter 12] 7z =Wx



Principal Component Analysis (PCA)

e PCA’s target: finding the best
lower dimensional sub-space
that conveys most of the
variance in the original data

Feature 2

* Example: If we were to
compress 2-D data to 1-D
subspace, then PCA prefers
projecting to the black line,
since it preserves more
variance comparing to blue line.
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Principle Axes

* Objective of PCA: Given data in RM,
want to rigidly rotate the axes to
new positions (principle axes) with
the following properties:

» Ordered such that principle axis 1
has the highest variance, axis 2 has
the next highest variance, ..., and
axis M has the lowest variance.

» Covariance among each pair of the
principal axes is zero.

* The k’th principle component is the
projection to the k’th principle axis.

* Keep the first m < M principle
components for dimensionality
reduction.
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Principle Component Computation

* Given N data x4, ...,
matrix for the data

xy € RM, PCA first computes the covariance

N
y = 1 . — )T = UuAUT
N (x; —p)(x; — )

where u € RM is the data mean.

* Since X is symmetric, X can be written as X = UAU", where U =

[uy .
diag(Aq, ...,

arranged in non-ascending order 4; = 1, =

..Uy | is orthogonal matrix of eigenvectors (of X), A =
Ay ) is diagonal matrix of the associated eigenvalues

- > Ay = 0. (Note

that all eigenvalues are non-negative real scalars since X' is semi-

positive definite.)

* For data x € RY, compute its 15t principle component as u! x, 2'“0I

principle component as uzx

Orthogonal matrix:
U = [uy ...uy] € RM*M is an orthogonal matrix if

U4, ..., Uy are orthogonal and have unit length
1 ifi=j
Tor _
i {0 ifi # |
Thatis, UTU = I, namely, U™ =

UT

., M’th principle component as qu

Positive definite:
X € RM*M js positive semi-definite if x” Zx > 0 for

all x € RM. If the equality holds only when x = 0,
then X is positive definite.
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Principle Components are Uncorrelated

e The covariance of the k’th and £’th principle components of data
X1, e, XN IS

N N

1 1

Nz[ui(xi -]l (xi -] = N E w (x; — ) (x; — )y
=1 i=1

A, ifk=7¢
T T T T k

=u,Xu, = u, UAU = e Ae, =

thestle = W AT Re = €€ {o ifk # £
Therefore

»The variance of the k’th principle components is 4.

= principle axis 1 has the highest variance, axis 2 has the next
highest variance, ..., and axis M has the lowest variance.

» The covariance of different principle components is zero.

»= Covariance among each pair of the principal axes is zero.
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PCA and Reconstruction Error

1
WLOG assume zero mean YL, x; = 0

Spca = Span(uy, ..., uy,)

S: Arbitrary m-
dimensional subspace

VariaNnce after projegvtion: Mean square error after projection:
N N
2 2 2
E ~(PCA E ~(S z : —~ z :

Projecting to Sp, yields the minimum mean squared error
among all possible m-dimensional subspaces. Why???




Low Rank Approximation

Eckart-Young-Mirsky Theorem:

Let X € RM*N he a matrix with singular value decomposition X =
UDV'T, where U € RM*M ¥ € RV*Nare orthogonal matrices of
left- and right-eigenvectors (of X), and D € RM*¥ js a diagonal
matrix of singular values o; = Dy;, arranged by their magnitude

loy| = |oz| = - = |Umin(M,N)|
Let m < min(M, N), then both low rank approximation problems
mjn“X — 7(“2 subject to rank(X) < m
X

m}%n“X — )?”F subjectto rank(X) < m

Has optimal solution X = Y™, o;u;v; . Here u; and v; denotes
the i"th column in matrices U, V, respectively.



1
WLOG assume zero mean U = NZ?’:l x;i =0

X =[x, x, ..xy] = UDVT

1 1 1 1

_ L T — —wxT — TynTyuT — il — pnT | T

E—ngl(xl wx; — W' =L XX" == UDV'VD"U U(NDD )U
1=

g 1 T . of Ur%lin(M,N)
A =diag(Aq,...,Ay) = NDD = diag o ,0,...,0

N N
|O'1| = |0-2| = e |mp||e5 Al = AZ = e = AM
~(PCA
Projection by PCA: X ( ) = 1 U; u Xn
m
X(PCa) = lf&PCA)EcéPCA) .Al(\fCA)] zu ul' X = zu u UDVT = Z oV,
i=1 i=1 i=1

.. ~(S
Projection to S: x( Jes
X = l’\(s) %) 521(\,5)] = rank(X®)) < dim(S) =m

Hence by Eckart-Young-Mirsky Theorem,
|X —xFeD] < |

, for all m-dimensional subspace S
That is,
5|

2
, for all m-dimensional subspace S
15
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Question: Why it suffices to assume data points have zero mean?

Given data points ®4, ..., xy € RM with mean Ji = —Zl 1 %; (not necessarily zero). Let S be

a m-dimensional subspace, and denote Sz = § + S as the m-dimensional affine set by
shifting S with vector & € RM,

Let U4, ..., U,, be an orthonormal basis of S Then the projection of X;, to Sg is

A(Sf) =&+ zu U; (%, —

and the projection error becomes

(Se) _ N ~ ~T _ ( N ~ ~T>
xn_xn —xn_f_ uiui(xn_f)— u;u (xn_f)
2. -,

i=1
The sum of squared projection error becomes Denote as A

N , N
> =25 = > haG - + a@ - 912
n=1 n=1

Z(IIA(xn DI + 2(A(x, — M) A@ - )+ IAGE - DI

Minimized when § = [i
Hence, to mmlmlze sum of squared projection error, one may take § = Hi, in which case

Xy — A(S ) = = Xn — 52515)

where the shifted datax,, =, — g (n = 1 .., N) have zero mean. 16




Theorem 0.1. Eckart-Young-Mirsky theorem

Let m < n, A € R™*"™ be a matriz with singular value decomposition A =
UXVT, where U,V are unitary matrices, ¥ = diag(cy, 09, ,0m) is a diago-
nal matriz with eigenvalues |o| > |og| > -+ > |op|. Let k < m, then both low
rank approrimation problems

minimize |A — Aglla  subject to  rank(Ag) < k
AkERmxn
minimize ||A — Agllp  subject to  rank(Ag) < k
AkeRmxn
have optimal solution Ay = > ., az-uz-vé-r. Here w; and v; denote the ith

column in matrices U and 'V, respectively.
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Proof. e Low rank approximation under 2-norm: Prove by contradiction.
Suppose there exists low rank matrix B € R™*" with rank(B) < k such
that

|A —Bll2 < [|[A = Agll2 = [ok41]-

Note that each nonzero vector w € Null(B) satisfies

|Awll> _ [[(A—B)wls

< [|A = Bll2 < |og+1]

w2 wll2
On the other hand, each nonzero vector x € Span(vy,--- ,Vvy1) satisfies
A2

Hence Null(B) and Span(vy,--- ,vi+1) are linear independent subspaces
i R™. However

dim(Null(B))+dim(Span(vy,- -+ ,Vk+1)) = (n —rank(B))+(k+1) > n+1
which is greater than the dimension of R", leading to a contradiction.
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Low rank approximation under Frobenius norm: For arbitrary B € R™*"
with rank(B) < k, denote N = UTBV, then

|A =B =|U"(A-B)Vl; = |- NIfj

Since dim(Null(N)) = n — k, let &;1,--- ,&,—x be orthonormal vectors in
Null(N), and let Z=[£; --- &,] € R™"*" be a unitary matrix. Then

IZ = NIE = I(Z - N)E||F = Z I(E = N)&|[?

Wi
n—k n—k n—k N 9
> S IE-NER = Y S6)P = Yai " (62
i=1 i=1 i=1
: A 2
Denote w; = Z:.:lk (553)) , then 0 < w; < 1,V1 < j < n, and
n n n—k () 9 n—k n ) 9 n—k
>owy=323 () =23 (&) =X el =n-+
j=1 j=1 i=1 i=1 j=1 i=1

Therefore

IS - N||F>Zw]0 >Zo o} + Z 1-0? =||A— A}

j=k+1



Take X = [x; X, ...xy]st. 2 = —XXT UAUT then

Trace((DTZd)) = %Trace((bTXXch) = —||®TX||2
Optimization problem: NE”‘DT’“"Z NE = NZ =
maximize Trace(®! Zd)
subject to ®Td = I, Optimal solution: PCA axes
variables ® = [¢, ..., P,,] € RM*™ Dope = [Ug Uy ... Uy ]

op

$1

S = span(®) is am-
dimensional subspace

U,
Spca = Span(uy, ..., uy,) 20



PCA — Another Point of View

Basic Component:
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PCA looks like a neural network with one
. . . . Autoencoder
hidden layer (linear activation function)

To minimize reconstruction error:

e = (x—p) uy
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PCA looks like a neural network with one
. . . . Autoencoder
hidden layer (linear activation function)

To minimize reconstruction error:

e = (x—p) uy
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PCA looks like a neural network with one
. . . . Autoencoder
hidden layer (linear activation function)

To minimize reconstruction error:
X = 2 Cp U + U _
Tk e = (X — ) Uy
k=1
K = 2:
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PCA looks like a neural network with one
. . . . Autoencoder
hidden layer (linear activation function)

K To minimize reconstruction error:
X = 2 CrUp + U

e = (x—p) uy
k=1

K =2: It can be deep. - Deep Autoencoder

Minimize
error
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PCA - Pokemon

* Inspired from:
https://www.kaggle.com/strakul5/d/abcsds/pokemon/princi
pal-component-analysis-of-pokemon-data

» 800 Pokemons, 6 features for each (HP, Atk, Def, Sp Atk, Sp
Def, Speed) P
i

e How many principle components?
y princip P A+ A, + A5 + Ay + Ac + Ao

___

ratio | 045 0.18 0.13 0.12 | 0.07 0.04

Using 4 components is good enough
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ST | A | ber | spAt | spoet | peed
PC1 0.4 0.4 0.4 0.5 0.4 0.3

pc2

PCA - Pokemon

PC2
PC3
PC4

TR
0.1 0.0 0.6 0.3 0.2 0.7
0.5 0.6 0.1 0.3
0.7 0.4 0.4 0.1 0.3




PCA - Pokémon
--mmm
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images
30 components:
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PCA - Face

30 components:
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http://www.cs.unc.edu/~lazebnik/research/spr Eigen-fa ce
ing08/assignment3.html 31




Weakness of PCA

* Unsupervised * Linear
Q o —
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http://www.astroml.org/book_figures/c
hapter7/fig_S_manifold PCA.html
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