X i# i Pei-YuanWu
Dept. Electrical Engineering
National Taiwan University

2022/10/1



AGENDA

= Linear Algebra Preliminaries

= Spectral theorem for Symmetric matrices
= Principle Component Analyais (PCA)

= Singular Value Decomposition (SVD)
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VECTOR SPACE

Vector space (V,F, +,")
- I/': A set of objects (called vectors)
- F:Field (e.g., R or C€)
- Addition of vectors +: IV XV = V (1.e., addition is closed in /)
» Commutativity: x +y =y + x
> Associativity: (x +y)+z=x+ (y + 2)
» d0 eV suchthat0+ x=x+0=x,Vx eV
v Proposition: 0 is unique, called the zero vector. (Exercise)
> Vx €V,3(—x) e Vsuchthatx+ (—x) =0
v Proposition: Vx € V, (—x) is unique, called the additive inverse of x. (Exercise)
 Scalar multiplication: : F X V - V (i.e., scalar multiplication is closed in V)
> Compatibility: a(bx) = (ab)x,Vx € V,a,b € F
> Distributivity:a(x + y) = ax +ay, (a+ b)x =ax + bx,Vx,y € V,a,b € F
> lx=x
- Example: Euclidean space R".
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INNER PRODUCT SPACE

= An inner product space is a vector space V over the field F (R or C)

together with an inner product
(') VXV ->F

That satisfies the following three axioms for all vectors x,y,z € IV and all
scalars a € F:

»Conjugate symmetry: (x, y) = (y, x)

»Linearity in the first argument
(ax,y) = alx,y)
(x+y,2) =(x,2) +(y, 2)

» Positive definiteness
(x,x) =0
(x,x)=0x=0

2022/10/1 @



EUCLIDEAN SPACE

- R™ is a vector space over field R by defining elementwise addition and scalar
multiplication: (Exercise: Prove that vector space axioms hold)

- Euclidean space R" =

X1 V1 X1+ Y1
»>Addition: +1: = :
Xn Yn [ Xn + Yn
X4 o,
»Scalar multiplication: a| : ] =\ : ],oc € R
| Xn X7

- R™ is an inner product space by defining inner (dot) product:
X171 [V1

»Inner (dot) product: < : :
xn

)

> =x1y1 + -+ x,y, ER
Indl gn
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COMPLEX EUCLIDEAN SPACE

X1
X1, e, X € C}

- Complex Euclidean space C" = {
xn

- C" is a vector space over field C by defining elementwise addition and scalar
multiplication: (Exercise: Prove that vector space axioms hold)

X1 V1 X1+ Y1
»>Addition: +1: = :
Xn Yn [ Xn + Yn
X4 o,
»Scalar multiplication: a| : ] =\ : ],oc €C
| Xn X7

- C" is an inner product space by defining inner (dot) product:
X171 [V1

»Inner (dot) product: < : :
xn

)

> = X917+ -+ x99, €C
Yull gn
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LINEAR MAPPING

= Let I/ and W be vector spaces over the same field F. A function T:V —
W is said to be a linear mapping if it preserves the addition and
scalar multiplication operations. Namely,
T(ax + by) = aT(x) + bT(y),Vx,y € M,a,b € F

- Example: Let F be a field (R or C). Each matrix A € F™*" can be

considered as a linear mapping T: F"* —» F™ defined as
T(x) = Ax

- Proposition: Let F be a field (R or C). Each linear mapping T: F"* — F™
can be represented by a matrix A € F™*" such that
T(x) =Ax,Vx € F™
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EIGEN-VECTOR AND EIGEN-VALUE

= Let V be vector space over the same field F, T:VV — V be a linear
mapping. We call v € V an eigenvectorof T if v # 0 and
T(v) = Av

where A € F.We call 1 the eigenvalue associated with v.

= Let F be a field (R or C). A matrix A € F**" can be viewed as a linear
mapping T: F" - F",T(x) = Ax. Hence we call 1 the eigenvalue (of A)
associated with eigenvector (of A) v € F" if v # 0 and
Av = v

= Exercise: Eigenvector and eigenvalue of
a4 = [—1 6]
3 2
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SYMMETRIC MATRIX IS DIAGONALIZABLE

= Theorem 5: If A € R™" is symmetric, then there exists diagonal
matrix A € R"" and orthogonal matrix U € R™*" such that A = UAU"

eigenvectors

Symmelric:
A = [a;;] € €" is symmetricif a;; = aj;

Orthogonal matrix:
U = [v; ...v,] € R"" is an orthogonal matrix if
V4, ..., Uy are orthogonal and have unit length

| ro_[1 ifk=¢
Eigen Values VY2 =10 ifk = ¢

That is, UTU = I,namely, U~! = U". ,
Avk — Akvk 2022/10/7 @



We would also want to prove that

HERMITIAN MATRIX IS DIAGONALIZABLE

= Theorem 4: If A € C"*" is Hermitian, then there exists diagonal
matrix A € R™" and unitary matrix U € C"*" such that A = UAUH

eigenvectors

Eigen Values

Avk = Akvk

Conjugate transpose:
The conjugate transpose of A € C™*" s
denoted as AY = AT € CV™

Hermitian:
A = [ai j] € C"*" is Hermitian if a;; = @;

Unitary Matrix:
U = [v;..v,] € C"™" is an unitary matrix if
V4, ..., Uy are orthogonal and have unit length

1 ifk=7¢
Vv, = {O

ifk+ ¢
Thatis, U U =1
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= M is called a subspace of vector space (V, F), if it is closed under
vector addition and multiplication. Namely,
ax + by € M,Vx,y € M,a,b € F

=LetV be avector space,T:V — V be a linear mapping. M is called an
invariant subspaceof T if T(x) € M,Vx € M.

= Let F be afield (R or C). A matrix A € F™*" can be viewed as a linear
mapping T: F* - F™,T(x) = Ax. We call M an invariant subspace of A
if Ax € M,Vx € M.
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ADJOINT OPERATOR

= Let H{, H, be inner product spaces, T: H; - H, be a linear mapping. If a
linear mapping T": H, — H; satisfies

(TX) Y>H2 — (X, T*Y>H1;vx € Hliy € HZ

Then we call T™ the adjointof T.

= Proposition: T is unique (if it does exist) (Exercise)
= Proposition: (T*)* =T

Proof: (T*y,x)y, =, TV, =Tx, Yy, = (¥, Tx)y,,VXx € Hy,y € H,

= Example: Suppose linear mapping T: C" — C™ is represented by A €
C™*"_ Since

(Tx,y) = (Ax,y) = y" (Ax) = (A"y)"'x = (x,A"y),
therefore T has adjoint T*: C™ — C", which is represented by A" € C"™*",
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SELF ADJOINT

= Let H be inner product space, T: H —» H be a linear mapping. We call T
self-adjoint if T" exists and

T=T"
= Example: If linear mapping T: C* — C" is self-adjoint and represented
by A € C"*", then A = A", i.e., A is Hermitian.
= Proposition: If 1 is an eigenvalue of self-adjoint mapping 7, then 4 € R.

Proof: Let x be an eigenvector associated with A, then B
AMx,x) =(Tx,x) =(x,T"x) = (x, Tx) = A{x, x)

Therefore 1 = A.
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NORMAL OPERATOF

= Let H be inner product space, T: H - H be a linear mapping. We call T
normal if T" existsand TT* =T"T.

= Example: Suppose linear mapping T: C" — C" is represented by 4 € C™*",
then T is normal iff AAY = A" A.

= Proposition: If A € C"*" is normal, then

|Ax — Ax||? = ||[Afx — Ax ‘VxeChL1eC

Proof:
|Ax — Ax||? = x"(AHA — 24" — 2A + |A12D)x = xH (AAH — QA — 247 + |2)%])x = ||AHx — /Tx”2

» Proposition: Let A = UAU" for which A € C""*" is diagonal and U € C"" is
unitary, then 4 is normal

Proof: AA" = UAARUY = UAPAUH = AP A
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NORMAL MATRIX IS DIRGONALIZABLE

= Lemma 1:If v, v,, ..., vy are eigenvectors of an operator T, then M, =
{x|(x,v;) =0,Vi =1,2, ..., k} is an invariant subspace of T".

Proof:

(T*x,v;) = {x, Tv;) = 2{x,v;) = 0,Vx EM,,i =12, ..,k
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NORMAL MATRIX IS DIAGONALIZABLE

= Lemma 2:If M is a non-trivial invariant subspace of linear mapping
T:C" — C", then there exists 1 € C,v € M,v # 0 such that Tv = Av

Proof: Take A € C™*" which represents T. Take U € C"**™ whose columns u,, ..., u,,
form an orthonormal basis of M. Define ¥: C™ - M as

i=1
Then 1 is a one-to-one onto linear mapping. Consider linear mapping ) 1o T o
: C™ - C™ which can be represented by U7 AU € C™*™, it is evident that there
exists some 1 € C, ¢ € C™, ¢ # 0 such that U?AUc = Ac. (Hint: Take A sastisfying
det(U" AU — AI) = 0 and nonzero vector ¢ € Null(U¥ AU — AI)). Note that

Y loToh(c) =UHAUC = Ac = T(Y(c)) = Y(Ac) = W(c)

Therefore v = Y(c) € M is a nonzero vector satisfying Tv = Av. Q.E.D.

Cm
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NORMAL MATRIX IS DIAGONALIZABLE

= Theorem 3: If A € C"*" is normal, then there exists diagonal matrix
A € C™*" and unitary matrix U € C"*" such that A = UAU".

Proof: We will construct pairwise-orthogonal eigenvectors v, ..., v, with
associating eigenvalues 1, ..., 1, of A as follows:

For k = 1,2, ...,n,suppose v, ..., Vy_q are pairwise-orthogonal eigenvectors of A. By
Lemma 1,

M, ={xeC*(x,v;)=0,Vi=1,..,k—1}

is a non-trivial invariant subspace of A. Therefore, by Lemma 2, there exists Ay € C,
Vi € Mj_1, Vi # 0 such that A"v, = A, v, which implies Av, = A, V. In other words,
Vy 1s an eigenvector of A with associating eigenvalue A, which is orthogonal to

V4, ..., Vx_1. Hence v, ..., Vi are pairwise-orthogonal eigenvectors of A.

The above procedure thus constructs pairwise-orthogonal eigenvectors v, ..., Uy
with associating eigenvalues 44, ..., 1, of A.
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NORMAL MATRIX IS DIAGONALIZABLE

= Theorem 3: If A € C"*" is normal, then there exists diagonal matrix
A € C™*" and unitary matrix U € C"*" such that A = UAU".

Proof: (contd) We have shown the existence of pairwise-orthogonal eigenvectors

V4, ..., Uy, normalized to unit length ||v;|| = 1, with associating eigenvalues 14, ..., ;.
SetU = [v; ...v,] € C™", then U'U = I,i.e., U is unitary. Since for every c € C",
one has

m

m m
AUc = Az CiV; = z cl-Avi = z cl-/ll-vi = UAc
=1 i=1

i=1

Where A = diag(cy, ..., ¢,). Therefore AU = UA which implies A = UAU™! = UAU".
QO.E.D.

That is, a normal matrix A can always be written as A = UAUY, where U is an unitary
matrix of eigenvectors, and /A is a diagonal matrix of the associated eigenvalues.
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HERMITIAN MATRIX IS DIAGONALIZABLE

Since every Hermitian matrix is normal (so is diagonizable) and self-adjoint

(so eigenvalues are real), one immediately obtains Theorem 4, as restated
below:

= Theorem 4: If A € C""*" is Hermitian, then there exists diagonal matrix A €
R™" and unitary matrix U € C"" such that A = UAU".
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REAL SYMMETRIC MATRIX IS DIAGONALIZABLE WITH
REAL EIGENVECTORS

= Lemma 3: If M is a non-trivial invariant subspace of self-adjoint operator
T:R™ - R", then there exists 1 € R, v € M, v # 0 such that Tv = Av

Proof: Take symmetnc matrix A € R™" which represents T. Take U € R™™ whose
columns u,, ..., u,, form an orthonormal basis of M. Define y): R™ - M as

T

i=1
Then 1 is a one-to-one onto linear mapping. Consider linear mapping ) 1o T o
P: R™ - R™ which can be represented by UT AU € R™*™, Note that U AU is self-adjoint,
so it has eigenvalue 1 € R and there is non-zero ¢ € R™ for which UT AUc = Ac. Note that

Y loToh(c) =UTAUCc = Ac = T(Y(c)) = Y(Ac) = W(c)

Therefore v = Y/(c) € M is a nonzero vector satisfying Tv = Av. Q.E.D.

2022/10/1 @



REAL SYMMETRIC MATRIX IS DIAGONALIZABLE WITH
REAL EIGENVECTORS

=« Theorem 5: If A € R™*" is symmetric, then there exists diagonal matrix
A € R™" and orthogonal matrix U € R™" such that A = UAU".

Proof: We will construct pairwise-orthogonal eigenvectors v, ..., v, with associating
eigenvalues 44, ..., 1, of A as follows:

For k = 1,2, ...,n,suppose v, ..., Vy_q are pairwise-orthogonal eigenvectors of A. By
Lemma 1,

M, ={xeR'|(x,v;)=0Vi=1,.., k—1}

is a non-trivial invariant subspace of AT = A. Therefore, by Lemma 3, there exists 1 €
R, vy € M _4, v # 0 such that Avy = A vy. In other words, vy is an eigenvector of A
with associating eigenvalue A, which is orthogonal to v4, ..., vx_;. Hence v, ..., v are
pairwise-orthogonal eigenvectors of A.

The above procedure thus constructs pairwise-orthogonal eigenvectors v, ..., v, with
associating eigenvalues 14, ..., 4, of A.
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REAL SYMMETRIC MATRIX IS DIAGONALIZABLE WITH
REAL EIGENVECTORS

=« Theorem 5: If A € R™*" is symmetric, then there exists diagonal matrix
A € R™" and orthogonal matrix U € R™" such that A = UAU".

Proof: (contd): We have shown the existence of pairwise-orthogonal eigenvectors
V4, ..., Uy, normalized to unit length ||v;|| = 1, with associating eigenvalues 44, ..., 4,,.
SetU = [v; ...v,] € RY" then UTU = I,i.e., U is orthogonal. Since for every ¢ € R",
one has

m m m
AUc = AZ CiV; = 2 cl-Avi = Z cl-/ll-vl- = UAc
=1 =1

Where A = diag(cy, ..., ¢,,). Therefore AU = UA which implies A = UAU™! = UAUT.
O.E.D.
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DIMENSIONALITY REDUCTIO}

- Mapping the original high-dimensional data onto a lower-dimensional subspace.
- Pros for dimensionality reduction
> Clarity of representation, ease of understanding (e.g., visualization in 2D or 3D)
» Data compression, computational cost reduction.
» Noise reduction, prevention of overfitting
- Cons for dimensionality reduction

> oversimplification: loss of important or relevant information
M m

N X ‘ N

al

2022/10/1 @



PRINCIPAL COMPONENT ANALYSIS (PCA)

| | | | |
= PCA’s target: finding the best lower
. ) 20 |
dimensional sub-space that conveys most of
the variance in the original data
« Example: If we were to compress 2-D data to 10
1-D subspace, then PCA prefers projecting to ~
the black line, since it preserves more £ ol
variance comparing to blue line. ©
-10
20 L
A | | | | |
-20 -10 0 10 20
Feature 1
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PRINCIPLE AXES

= Objective of PCA: Given data in R, want to
rigidly rotate the axes to new positions (principle
axes) with the following properties:

» Ordered such that principle axis 1 has the
highest variance, axis 2 has the next highest
variance, ..., and axis M has the lowest variance.

» Covariance among each pair of the principal
axes is zero.

= The k’th principle component is the projection
to the k’th principle axis.

= Keep the first m < M principle components for
dimensionality reduction.

x2
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PRINCIPLE COMPONENT COMPUTATION

= Given N data x4, ..., xy € RM, P(IZVA first compute the covariance matrix for the data
1 T T
E=1 ) (- W@ - w' = VAU
i=1

where u € R is the data mean.

= Since X is symmetric, X can be written as ¥ = UAU”, where U = [v, ...v,] is unitary
matrix of eigenvectors (of X), A = diag(44, ..., Ay) is diagonal matrix of the
associated eigenvalues arranged in non-ascending order A, = 4, = - > A, = 0.

(Note that all eigenvalues are non-negative real scalars since X is semi-positive
definite.)

= For data x € RY, compute its 15t principle component as v! x, 24 principle
component as v x,..., M’'th principle component as v, x

Positive definite:
A € R™*" is semi-positive definite if xTAx > 0
for all x € R". If the equality holds only when
x = 0, then A is positive definite. e

8



PRINCIPLE COMPONENTS ARE UNCORRELATED

= The covariance of the k’th and #’th principle components of data x4, ..., xy is
N N
1 T T 1 T T
NZ[vk (x; — W |ve (x; —w)| = Nz V(X — W) (x; — 1) vy
i=1 i=1

A ifk=7
=viZv, = viUAUTv, = el Ne, = {7
Ve=Pe = Uk Ve = Gl 0 ifk+#7?
Therefore
»The variance of the k’th principle components is 4.

= principle axis 1 has the highest variance, axis 2 has the next highest variance, ...,
and axis M has the lowest variance.

»The covariance of different principle components is zero.

»= Covariance among each pair of the principal axes is zero.
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THEOREM OF SVD

= Theorem: Suppose A € R™*", then there exists a factorization, called singular
value decomposition of A, of the form

A=UxVT

where U € R™™ and V € R™*" are orthogonal matrices, ¥ € R™*" is a diagonal
matrix with non-negative numbers on the diagonal.

Proof: Since ATA € R™ " is symmetric and semi-positive definite, it can be factorized in the
form

ATA=vAVT

where V = [v4, ..., v,,] € R™*" is orthogonal matrix, 4 = diag(44, ..., A,) € R™" is a diagonal
matrix of eigenvalues arranged in non-ascending order
M=2=2-21,=0
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THEOREM OF SVD

Proof (contd): Let p = max{i: A; > 0} be the rank of A. Define u; = % €e R fori=1,..,p. Then
Avl Av]> ('UL,ATA’D]> \/T 1, ifi = ]

(ul,u])—(\/_ \/_ \/—\/_ \/—l<vuv]>_ ij {0 ifi # ]

That is, uy, ..., u, are pa1rw1se orthogonal unit vectors in R™. By Gram-Schmidt process we can
construct up+1, . € R™(if p < m) such that u4, ..., u,, are pairwise orthogonal unit vectors. This
gives orthogonal matr1x U=[uy,.., uy] € RM™,

We have the following claim:
. . T _ . .
Claim: u; Av] = 1/A]5l] fori = 1, —,m, ] = 1, e,
Proof: If j < p, then Av; = ,/A;u;, therefore u Av; = [Lujw; = \[4;5;;.
Ifj > p, since v; is an eigenvector of AT A with associating eigenvalue A;j = 0, therefore
(4v))' (Av)) = v ATAv; = v] 4v; = 0

Hence Av; = 0 and u; Av; = 0 = ,/4;6;;. Q.E.D.

Therefore = = UTAV = diag(\/A1, ..., /45,0, ... 0) € R™" is a diagonal matrix.

Therefore A = UXVT. Q.E.D.
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