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▪ Linear Algebra Preliminaries

▪ Spectral theorem for Symmetric matrices

▪ Principle Component Analyais (PCA)

▪ Singular Value Decomposition (SVD)
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Vector space (𝑉, 𝐹, +,∙)
• 𝑉: A set of objects (called vectors)
• 𝐹: Field (e.g., ℝ or ℂ)
• Addition of vectors +:𝑉 × 𝑉 → 𝑉 (i.e., addition is closed in 𝑉)
➢ Commutativity: 𝒙 + 𝒚 = 𝒚 + 𝒙
➢ Associativity: 𝒙 + 𝒚 + 𝒛 = 𝒙 + (𝒚 + 𝒛)
➢ ∃𝟎 ∈ 𝑉 such that 𝟎 + 𝒙 = 𝒙 + 𝟎 = 𝒙, ∀𝒙 ∈ 𝑉

✓Proposition: 𝟎 is unique, called the zero vector. (Exercise)

➢ ∀𝒙 ∈ 𝑉, ∃(−𝒙) ∈ 𝑉 such that 𝒙 + −𝒙 = 𝟎
✓Proposition: ∀𝒙 ∈ 𝑉, (−𝒙) is unique, called the additive inverse of 𝒙. (Exercise) 

• Scalar multiplication: ∙: 𝐹 × 𝑉 → 𝑉 (i.e., scalar multiplication is closed in 𝑉)
➢ Compatibility: 𝑎 𝑏𝒙 = 𝑎𝑏 𝒙, ∀𝒙 ∈ 𝑉, 𝑎, 𝑏 ∈ 𝐹
➢ Distributivity: 𝑎 𝒙 + 𝒚 = 𝑎𝒙 + 𝑎𝒚, 𝑎 + 𝑏 𝒙 = 𝑎𝒙 + 𝑏𝒙, ∀𝒙, 𝒚 ∈ 𝑉, 𝑎, 𝑏 ∈ 𝐹
➢ 1𝒙 = 𝒙

• Example: Euclidean space ℝ𝑛.
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▪ An inner product space is a vector space 𝑉 over the field 𝐹 (ℝ or ℂ) 
together with an inner product

∙,∙ : V × V → 𝐹

That satisfies the following three axioms for all vectors 𝒙, 𝒚, 𝒛 ∈ 𝑉 and all 
scalars 𝑎 ∈ 𝐹:

➢Conjugate symmetry: 𝒙, 𝒚 = 𝒚, 𝒙

➢Linearity in the first argument
𝑎𝒙, 𝒚 = 𝑎 𝒙, 𝒚

𝒙 + 𝒚, 𝒛 = 𝒙, 𝒛 + 𝒚, 𝒛

➢Positive definiteness
𝒙, 𝒙 ≥ 0

𝒙, 𝒙 = 0 ⇔ 𝒙 = 0
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• Euclidean space ℝ𝑛 =

𝑥1
⋮
𝑥𝑛

: 𝑥1, … , 𝑥𝑛 ∈ ℝ

• ℝ𝑛 is a vector space over field ℝ by defining elementwise addition and scalar 
multiplication: (Exercise: Prove that vector space axioms hold)

➢Addition: 

𝑥1
⋮
𝑥𝑛

+

𝑦1
⋮
𝑦𝑛

=

𝑥1 + 𝑦1
⋮

𝑥𝑛 + 𝑦𝑛

➢Scalar multiplication: α

𝑥1
⋮
𝑥𝑛

=

α𝑥1
⋮

α𝑥𝑛
, α ∈ ℝ

• ℝ𝑛 is an inner product space by defining inner (dot) product:

➢Inner (dot) product: 

𝑥1
⋮
𝑥𝑛

,

𝑦1
⋮
𝑦𝑛 ℝ𝑛

= 𝑥1𝑦1 +⋯+ 𝑥𝑛𝑦𝑛 ∈ ℝ
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• Complex Euclidean space ℂ𝑛 =

𝑥1
⋮
𝑥𝑛

: 𝑥1, … , 𝑥𝑛 ∈ ℂ

• ℂ𝑛 is a vector space over field ℂ by defining elementwise addition and scalar 
multiplication: (Exercise: Prove that vector space axioms hold)

➢Addition: 

𝑥1
⋮
𝑥𝑛

+

𝑦1
⋮
𝑦𝑛

=

𝑥1 + 𝑦1
⋮

𝑥𝑛 + 𝑦𝑛

➢Scalar multiplication: α

𝑥1
⋮
𝑥𝑛

=

α𝑥1
⋮

α𝑥𝑛
, α ∈ ℂ

• ℂ𝑛 is an inner product space by defining inner (dot) product:

➢Inner (dot) product: 

𝑥1
⋮
𝑥𝑛

,

𝑦1
⋮
𝑦𝑛 ℂ𝑛

= 𝑥1𝑦1 +⋯+ 𝑥𝑛𝑦𝑛 ∈ ℂ
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▪ Let 𝑉 and 𝑊 be vector spaces over the same field 𝐹. A function 𝑇: 𝑉 →

𝑊 is said to be a linear mapping if it preserves the addition and 

scalar multiplication operations. Namely,

𝑇 𝑎𝒙 + 𝑏𝒚 = 𝑎𝑇 𝒙 + 𝑏𝑇(𝒚), ∀𝒙, 𝒚 ∈ 𝑀, 𝑎, 𝑏 ∈ 𝐹

• Example:  Let 𝐹 be a field (ℝ or ℂ). Each matrix A ∈ 𝐹𝑚×𝑛 can be 
considered as a linear mapping 𝑇: 𝐹𝑛 → 𝐹𝑚 defined as

𝑇(𝒙) = 𝐴𝒙

• Proposition: Let 𝐹 be a field (ℝ or ℂ). Each linear mapping 𝑇: 𝐹𝑛 → 𝐹𝑚

can be represented by a matrix 𝐴 ∈ 𝐹𝑚×𝑛 such that
𝑇 𝒙 = 𝐴𝒙, ∀𝒙 ∈ 𝐹𝑛
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▪ Let 𝑉 be vector space over the same field 𝐹, 𝑇: 𝑉 → 𝑉 be a linear 
mapping.  We call 𝒗 ∈ 𝑉 an eigenvector of 𝑇 if 𝒗 ≠ 𝟎 and

𝑇 𝒗 = 𝜆𝒗

where 𝜆 ∈ 𝐹. We call 𝜆 the eigenvalue associated with 𝒗.

▪ Let 𝐹 be a field (ℝ or ℂ). A matrix 𝐴 ∈ 𝐹𝑛×𝑛 can be viewed as a linear 
mapping 𝑇: 𝐹𝑛 → 𝐹𝑛, 𝑇(𝒙) = 𝐴𝒙.  Hence we call 𝜆 the eigenvalue (of 𝐴) 
associated with eigenvector (of 𝐴) 𝒗 ∈ 𝐹𝑛 if 𝒗 ≠ 𝟎 and

𝐴𝒗 = 𝜆𝒗

▪ Exercise: Eigenvector and eigenvalue of

𝐴 =
−1 6
3 2

2022/10/7 9



2022/10/7

10



▪ Theorem 5: If 𝐴 ∈ ℝ𝑛×𝑛 is symmetric, then there exists diagonal 
matrix Λ ∈ ℝ𝑛×𝑛 and orthogonal matrix 𝑈 ∈ ℝ𝑛×𝑛 such that 𝐴 = 𝑈Λ𝑈𝑇
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𝑼 = [𝒗1, 𝒗2, … , 𝒗𝑛]

eigenvectors

𝜦 =

𝜆1 0
0 𝜆2

⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛

Eigen Values

Orthogonal matrix:
𝑈 = [𝒗1…𝒗n] ∈ ℝ𝑛×𝑛 is an orthogonal matrix if 

𝒗1, … , 𝒗n are orthogonal and have unit length

𝒗k
𝑇𝒗ℓ = ቊ

1 if k = ℓ
0 if k ≠ ℓ

That is, 𝑈𝑇𝑈 = 𝐼, namely, 𝑈−1 = 𝑈𝑇.
𝐴𝒗𝑘 = 𝜆𝑘𝒗𝑘

Symmetric:
𝐴 = 𝑎𝑖𝑗 ∈ ℂ𝑛×𝑛 is symmetric if 𝑎𝑖𝑗 = 𝑎𝑗𝑖

In this lecture, we want to prove that



▪ Theorem 4: If 𝐴 ∈ ℂ𝑛×𝑛 is Hermitian, then there exists diagonal 
matrix Λ ∈ ℝ𝑛×𝑛 and unitary matrix 𝑈 ∈ ℂ𝑛×𝑛 such that 𝐴 = 𝑈Λ𝑈H
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𝑈 = [𝒗1, 𝒗2, … , 𝒗𝑛]

eigenvectors

𝛬 =

𝜆1 0
0 𝜆2

⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛

Eigen Values

Unitary Matrix:
𝑈 = [𝒗1…𝒗n] ∈ ℂ𝑛×𝑛 is an unitary matrix if 

𝒗1, … , 𝒗n are orthogonal and have unit length

𝒗k
𝐻𝒗ℓ = ቊ

1 if k = ℓ
0 if k ≠ ℓ

That is, 𝑈𝐻𝑈 = 𝐼𝐴𝒗𝑘 = 𝜆𝑘𝒗𝑘

Conjugate transpose:
The conjugate transpose of 𝐴 ∈ ℂ𝑚×𝑛 is 
denoted as 𝐴𝐻 = 𝐴𝑇 ∈ ℂ𝑛×𝑚

Hermitian:
𝐴 = 𝑎𝑖𝑗 ∈ ℂ𝑛×𝑛 is Hermitian if 𝑎𝑖𝑗 = 𝑎𝑗𝑖

We would also want to prove that



▪𝑀 is called a subspace of vector space (𝑉, 𝐹), if it is closed under 

vector addition and multiplication.  Namely,

𝑎𝒙 + 𝑏𝒚 ∈ 𝑀, ∀𝒙, 𝒚 ∈ 𝑀, 𝑎, 𝑏 ∈ 𝐹

▪ Let 𝑉 be a vector space, 𝑇: 𝑉 → 𝑉 be a linear mapping. 𝑀 is called an 

invariant subspace of 𝑇 if 𝑇(𝒙) ∈ 𝑀, ∀𝒙 ∈ 𝑀.

▪ Let 𝐹 be a field (ℝ or ℂ). A matrix 𝐴 ∈ 𝐹𝑚×𝑛 can be viewed as a linear 

mapping 𝑇: 𝐹𝑛 → 𝐹𝑚, 𝑇(𝒙) = 𝐴𝒙.  We call 𝑀 an invariant subspace of 𝐴

if 𝐴𝒙 ∈ 𝑀, ∀𝒙 ∈ 𝑀.
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▪ Let 𝐻1, 𝐻2 be inner product spaces, 𝑇:𝐻1 → 𝐻2 be a linear mapping.  If a 
linear mapping 𝑇∗: 𝐻2 → 𝐻1 satisfies

𝑇𝐱, 𝐲 𝐻2 = 𝐱, 𝑇∗𝐲 𝐻1 , ∀𝐱 ∈ 𝐻1, 𝐲 ∈ 𝐻2

Then we call 𝑇∗ the adjoint of 𝑇.

▪ Proposition: 𝑇∗ is unique (if it does exist) (Exercise)

▪ Proposition: 𝑇∗ ∗ = 𝑇

Proof: 𝑇∗𝒚, 𝒙 𝐻1 = 𝒙, 𝑇∗𝒚 𝐻1 = 𝑇𝒙, 𝒚 𝐻2 = 𝒚, 𝑇𝒙 𝐻2 , ∀𝒙 ∈ 𝐻1, 𝒚 ∈ 𝐻2

▪ Example:  Suppose linear mapping 𝑇: ℂ𝑛 → ℂ𝑚 is represented by 𝐴 ∈
ℂ𝑚×𝑛. Since

𝑇𝒙, 𝒚 = 𝐴𝒙, 𝒚 = 𝒚𝐻(𝐴𝒙) = (𝐴𝐻𝒚)𝐻𝒙 = 𝒙, 𝐴𝐻𝒚 ,

therefore 𝑇 has adjoint 𝑇∗: ℂ𝑚 → ℂ𝑛, which is represented by 𝐴𝐻 ∈ ℂ𝑚×𝑛.
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▪ Let 𝐻 be inner product space, 𝑇:𝐻 → 𝐻 be a linear mapping.  We call 𝑇
self-adjoint if 𝑇∗ exists and

𝑇 = 𝑇∗

▪ Example: If linear mapping 𝑇: ℂ𝑛 → ℂ𝑛 is self-adjoint and represented 
by 𝐴 ∈ ℂ𝑛×𝑛, then 𝐴 = 𝐴𝐻, i.e., 𝐴 is Hermitian. 

▪ Proposition: If 𝜆 is an eigenvalue of self-adjoint mapping 𝑇, then 𝜆 ∈ ℝ.

Proof: Let 𝒙 be an eigenvector associated with 𝜆, then
𝜆 𝒙, 𝒙 = 𝑇𝒙, 𝒙 = 𝒙, 𝑇∗𝒙 = 𝒙, 𝑇𝒙 = ҧ𝜆 𝒙, 𝒙

Therefore 𝜆 = ҧ𝜆.
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▪ Let 𝐻 be inner product space, 𝑇:𝐻 → 𝐻 be a linear mapping.  We call 𝑇
normal if 𝑇∗ exists and 𝑇𝑇∗ = 𝑇∗𝑇.

▪ Example:  Suppose linear mapping 𝑇: ℂ𝑛 → ℂ𝑛 is represented by 𝐴 ∈ ℂ𝑛×𝑛, 
then 𝑇 is normal iff 𝐴𝐴𝐻 = 𝐴𝐻𝐴.

▪ Proposition: If 𝐴 ∈ ℂ𝑛×𝑛 is normal, then

𝐴𝒙 − 𝜆𝒙 2 = 𝐴𝐻𝒙 − ҧ𝜆𝒙
2
, ∀𝒙 ∈ ℂ𝑛, 𝜆 ∈ ℂ

Proof: 

𝐴𝒙 − 𝜆𝒙 2 = 𝒙𝐻 𝐴𝐻𝐴 − 𝜆𝐴𝐻 − ҧ𝜆𝐴 + 𝜆 2𝐼 𝒙 = 𝒙𝐻 𝐴𝐴𝐻 − ҧ𝜆𝐴 − 𝜆𝐴𝐻 + 𝜆 2𝐼 𝒙 = 𝐴𝐻𝒙 − ҧ𝜆𝒙
2

▪ Proposition: Let 𝐴 = 𝑈Λ𝑈H for which Λ ∈ ℂ𝑛×𝑛 is diagonal and 𝑈 ∈ ℂ𝑛×𝑛 is 
unitary, then 𝐴 is normal

Proof: 𝐴𝐴𝐻 = 𝑈𝛬𝛬𝐻𝑈𝐻 = 𝑈𝛬𝐻𝛬𝑈𝐻 = 𝐴𝐻𝐴
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▪ Lemma 1: If 𝒗1, 𝒗2, … , 𝒗k are eigenvectors of an operator 𝑇, then 𝑀𝑘 =
𝒙 𝒙, 𝒗𝑖 = 0, ∀𝑖 = 1,2,… , 𝑘 is an invariant subspace of 𝑇∗.

Proof:
𝑇∗𝒙, 𝒗𝑖 = 𝒙, 𝑇𝒗𝑖 = ഥ𝜆𝑖 𝒙, 𝒗𝑖 = 0, ∀𝒙 ∈ 𝑀𝑘 , 𝑖 = 1,2,… , 𝑘
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▪ Lemma 2: If 𝑀 is a non-trivial invariant subspace of linear mapping 
𝑇: ℂ𝑛 → ℂ𝑛, then there exists 𝜆 ∈ ℂ, 𝒗 ∈ 𝑀, 𝒗 ≠ 𝟎 such that 𝑇𝒗 = 𝜆𝒗

Proof: Take A ∈ ℂ𝑛×𝑛 which represents 𝑇.  Take U ∈ ℂ𝑛×𝑚 whose columns 𝒖1, … , 𝒖𝑚
form an orthonormal basis of 𝑀.  Define 𝜓:ℂ𝑚 → 𝑀 as 

𝜓

𝑐1
⋮
𝑐𝑚

=෍

𝑖=1

𝑚

𝑐𝑖𝒖𝑖

Then 𝜓 is a one-to-one onto linear mapping.  Consider linear mapping 𝜓−1 ∘ 𝑇 ∘
𝜓: ℂ𝑚 → ℂ𝑚 which can be represented by 𝑈𝐻𝐴𝑈 ∈ ℂ𝑚×𝑚, it is evident that there 
exists some 𝜆 ∈ ℂ, 𝒄 ∈ ℂ𝑚, 𝐜 ≠ 𝟎 such that 𝑈𝐻𝐴𝑈𝒄 = 𝜆𝒄. (Hint: Take 𝜆 sastisfying 
det 𝑈𝐻𝐴𝑈 − 𝜆𝐼 = 0 and nonzero vector 𝒄 ∈ 𝑁𝑢𝑙𝑙(𝑈𝐻𝐴𝑈 − 𝜆𝐼)).  Note that 

𝜓−1 ∘ 𝑇 ∘ 𝜓 𝒄 = 𝑈𝐻𝐴𝑈𝒄 = 𝜆𝒄 ⇒ 𝑇 𝜓 𝒄 = 𝜓 𝜆𝒄 = 𝜆𝜓 𝒄

Therefore 𝒗 = 𝜓 𝒄 ∈ 𝑀 is a nonzero vector satisfying 𝑇𝒗 = 𝜆𝒗. Q.E.D.
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▪ Theorem 3: If 𝐴 ∈ ℂ𝑛×𝑛 is normal, then there exists diagonal matrix 
Λ ∈ ℂ𝑛×𝑛 and unitary matrix 𝑈 ∈ ℂ𝑛×𝑛 such that 𝐴 = 𝑈Λ𝑈𝐻.

Proof: We will construct pairwise-orthogonal eigenvectors 𝒗1, … , 𝒗n with 
associating eigenvalues 𝜆1, … , 𝜆n of 𝐴 as follows:

For 𝑘 = 1,2, … , 𝑛, suppose 𝒗1, … , 𝒗k−1 are pairwise-orthogonal eigenvectors of 𝐴.  By 
Lemma 1, 

𝑀𝑘−1 = 𝒙 ∈ ℂ𝑛 𝒙, 𝒗𝑖 = 0, ∀𝑖 = 1,… , 𝑘 − 1

is a non-trivial invariant subspace of 𝐴.  Therefore, by Lemma 2, there exists 𝜆k ∈ ℂ,
𝒗k ∈ 𝑀𝑘−1,𝒗k ≠ 𝟎 such that 𝐴𝐻𝒗k = 𝜆k𝒗k, which implies 𝐴𝒗k = 𝜆k𝒗k.  In other words, 
𝒗k is an eigenvector of 𝐴 with associating eigenvalue 𝜆k which is orthogonal to 
𝒗1, … , 𝒗k−1.  Hence 𝒗1, … , 𝒗k are pairwise-orthogonal eigenvectors of 𝐴.

The above procedure thus constructs pairwise-orthogonal eigenvectors 𝒗1, … , 𝒗n
with associating eigenvalues 𝜆1, … , 𝜆n of 𝐴.
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▪ Theorem 3: If 𝐴 ∈ ℂ𝑛×𝑛 is normal, then there exists diagonal matrix 
Λ ∈ ℂ𝑛×𝑛 and unitary matrix 𝑈 ∈ ℂ𝑛×𝑛 such that 𝐴 = 𝑈Λ𝑈𝐻.

Proof: (cont’d) We have shown the existence of pairwise-orthogonal eigenvectors 
𝒗1, … , 𝒗n, normalized to unit length 𝒗𝑖 = 1, with associating eigenvalues 𝜆1, … , 𝜆n.  
Set 𝑈 = [𝒗1…𝒗n] ∈ ℂ𝑛×𝑛, then 𝑈H𝑈 = 𝐼, i.e., 𝑈 is unitary.   Since for every 𝒄 ∈ ℂ𝑛,
one has

𝐴𝑈𝒄 = 𝐴෍

𝑖=1

𝑚

𝑐𝑖𝒗𝑖 =෍

𝑖=1

𝑚

𝑐𝑖𝐴𝒗𝑖 =෍

𝑖=1

𝑚

𝑐𝑖𝜆𝑖𝒗𝑖 = 𝑈Λ𝒄

Where Λ = 𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛).  Therefore 𝐴𝑈 = 𝑈Λ which implies 𝐴 = 𝑈Λ𝑈−1 = 𝑈Λ𝑈𝐻. 
Q.E.D.
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That is, a normal matrix 𝐴 can always be written as 𝐴 = 𝑈𝛬𝑈𝐻, where 𝑈 is an unitary 

matrix of eigenvectors, and 𝛬 is a diagonal matrix of the associated eigenvalues.



Since every Hermitian matrix is normal (so is diagonizable) and self-adjoint
(so eigenvalues are real), one immediately obtains Theorem 4, as restated 
below:

▪ Theorem 4: If 𝐴 ∈ ℂ𝑛×𝑛 is Hermitian, then there exists diagonal matrix Λ ∈
ℝ𝑛×𝑛 and unitary matrix 𝑈 ∈ ℂ𝑛×𝑛 such that 𝐴 = 𝑈Λ𝑈H.
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▪ Lemma 3: If 𝑀 is a non-trivial invariant subspace of self-adjoint operator 
𝑇:ℝ𝑛 → ℝ𝑛, then there exists 𝜆 ∈ ℝ, 𝒗 ∈ 𝑀, 𝒗 ≠ 𝟎 such that 𝑇𝒗 = 𝜆𝒗

Proof: Take symmetric matrix A ∈ ℝ𝑛×𝑛 which represents 𝑇.  Take U ∈ ℝ𝑛×𝑚 whose 
columns 𝒖1, … , 𝒖𝑚 form an orthonormal basis of 𝑀.  Define 𝜓:ℝ𝑚 → 𝑀 as 

𝜓

𝑐1
⋮
𝑐𝑚

=෍

𝑖=1

𝑚

𝑐𝑖𝒖𝑖

Then 𝜓 is a one-to-one onto linear mapping.  Consider linear mapping 𝜓−1 ∘ 𝑇 ∘
𝜓:ℝ𝑚 → ℝ𝑚 which can be represented by 𝑈𝑇𝐴𝑈 ∈ ℝ𝑚×𝑚.  Note that 𝑈𝑇𝐴𝑈 is self-adjoint, 
so it has eigenvalue 𝜆 ∈ ℝ and there is non-zero 𝒄 ∈ ℝ𝑚 for which 𝑈𝑇𝐴𝑈𝒄 = 𝜆𝒄.  Note that 

𝜓−1 ∘ 𝑇 ∘ 𝜓 𝒄 = 𝑈𝑇𝐴𝑈𝒄 = 𝜆𝒄 ⇒ 𝑇 𝜓 𝒄 = 𝜓 𝜆𝒄 = 𝜆𝜓 𝒄

Therefore 𝒗 = 𝜓 𝒄 ∈ 𝑀 is a nonzero vector satisfying 𝑇𝒗 = 𝜆𝒗. Q.E.D.
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▪ Theorem 5: If 𝐴 ∈ ℝ𝑛×𝑛 is symmetric, then there exists diagonal matrix 
Λ ∈ ℝ𝑛×𝑛 and orthogonal matrix 𝑈 ∈ ℝ𝑛×𝑛 such that 𝐴 = 𝑈Λ𝑈𝑇.

Proof: We will construct pairwise-orthogonal eigenvectors 𝒗1, … , 𝒗n with associating 
eigenvalues 𝜆1, … , 𝜆n of 𝐴 as follows:

For 𝑘 = 1,2, … , 𝑛, suppose 𝒗1, … , 𝒗k−1 are pairwise-orthogonal eigenvectors of 𝐴.  By 
Lemma 1, 

𝑀𝑘−1 = 𝐱 ∈ ℝ𝑛 𝐱, 𝒗i = 0, ∀i = 1,… , k − 1

is a non-trivial invariant subspace of 𝐴𝑇 = 𝐴.  Therefore, by Lemma 3, there exists 𝜆 ∈
ℝ,𝒗k ∈ 𝑀𝑘−1,𝒗k ≠ 𝟎 such that A𝒗k = 𝜆k𝒗k.  In other words, 𝒗k is an eigenvector of 𝐴
with associating eigenvalue 𝜆k which is orthogonal to 𝒗1, … , 𝒗k−1.  Hence 𝒗1, … , 𝒗k are 
pairwise-orthogonal eigenvectors of 𝐴.

The above procedure thus constructs pairwise-orthogonal eigenvectors 𝒗1, … , 𝒗n with 
associating eigenvalues 𝜆1, … , 𝜆n of 𝐴.

2022/10/7 23



▪ Theorem 5: If 𝐴 ∈ ℝ𝑛×𝑛 is symmetric, then there exists diagonal matrix 
Λ ∈ ℝ𝑛×𝑛 and orthogonal matrix 𝑈 ∈ ℝ𝑛×𝑛 such that 𝐴 = 𝑈Λ𝑈𝑇.

Proof: (cont’d):  We have shown the existence of pairwise-orthogonal eigenvectors 
𝒗1, … , 𝒗n, normalized to unit length 𝒗𝑖 = 1, with associating eigenvalues 𝜆1, … , 𝜆n.  
Set 𝑈 = [𝒗1…𝒗n] ∈ ℝ𝑛×𝑛, then 𝑈𝑇𝑈 = 𝐼, i.e., 𝑈 is orthogonal.   Since for every 𝒄 ∈ ℝ𝑛,
one has

𝐴𝑈𝒄 = 𝐴෍

𝑖=1

𝑚

𝑐𝑖𝒗𝑖 =෍

𝑖=1

𝑚

𝑐𝑖𝐴𝒗𝑖 =෍

𝑖=1

𝑚

𝑐𝑖𝜆𝑖𝒗𝑖 = 𝑈Λ𝒄

Where Λ = 𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑛).  Therefore 𝐴𝑈 = 𝑈Λ which implies 𝐴 = 𝑈Λ𝑈−1 = 𝑈Λ𝑈𝑇. 
Q.E.D.
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• Mapping the original high-dimensional data onto a lower-dimensional subspace.

• Pros for dimensionality reduction

➢ Clarity of representation, ease of understanding (e.g., visualization in 2D or 3D)

➢ Data compression, computational cost reduction.

➢ Noise reduction, prevention of overfitting

• Cons for dimensionality reduction

➢ oversimplification: loss of important or relevant information
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▪ PCA’s target: finding the best lower 
dimensional sub-space that conveys most of 
the variance in the original data

▪ Example: If we were to compress 2-D data to 
1-D subspace, then PCA prefers projecting to 
the black line, since it preserves more 
variance comparing to blue line.
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▪ Objective of PCA: Given data in ℝ𝑀, want to 
rigidly rotate the axes to new positions (principle 
axes) with the following properties:

➢Ordered such that principle axis 1 has the 
highest variance, axis 2 has the next highest 
variance, …, and axis M has the lowest variance.

➢Covariance among each pair of the principal 
axes is zero.

▪ The k’th principle component is the projection 
to the k’th principle axis.

▪ Keep the first 𝑚 < 𝑀 principle components for 
dimensionality reduction.
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▪ Given 𝑁 data 𝒙1, … , 𝒙𝑁 ∈ ℝ𝑀, PCA first compute the covariance matrix for the data

𝜮 =
1

𝑁
෍

𝑖=1

𝑁

(𝒙𝑖 − 𝝁)(𝒙𝑖 − 𝝁)𝑇 = 𝑼𝜦𝑼𝑇

where 𝝁 ∈ ℝ𝑀 is the data mean.

▪ Since 𝜮 is symmetric,  𝜮 can be written as 𝜮 = 𝑼𝜦𝑼𝑇, where 𝑼 = [𝒗1…𝒗n] is unitary 
matrix of eigenvectors (of 𝜮), 𝜦 = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑀) is diagonal matrix of the 
associated eigenvalues arranged in non-ascending order 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑀 ≥ 0. 
(Note that all eigenvalues are non-negative real scalars since 𝜮 is semi-positive 
definite.)

▪ For data 𝒙 ∈ ℝ𝑀, compute its 1st principle component as 𝒗1
𝑇𝒙, 2nd principle 

component as 𝒗2
𝑇𝒙,…, M’th principle component as 𝒗𝑀

𝑇 𝒙
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Positive definite:
𝐴 ∈ ℝ𝑛×𝑛 is semi-positive definite if 𝒙𝑇𝐴𝒙 ≥ 0
for all 𝒙 ∈ ℝ𝑛. If the equality holds only when 

𝒙 = 𝟎, then 𝐴 is positive definite.



▪ The covariance of the k’th and ℓ’th principle components of data 𝒙1, … , 𝒙𝑁 is

1

𝑁
෍

𝑖=1

𝑁

𝒗𝑘
𝑇(𝒙𝑖 − 𝝁) 𝒗ℓ

𝑇(𝒙𝑖 − 𝝁) =
1

𝑁
෍

𝑖=1

𝑁

𝒗𝑘
𝑇(𝒙𝑖 − 𝝁)(𝒙𝑖 − 𝝁)𝑇𝒗ℓ

= 𝒗𝑘
𝑇𝜮𝒗ℓ = 𝒗𝑘

𝑇𝑼𝜦𝑼𝑇𝒗ℓ = 𝒆𝑘
𝑇𝜦𝒆ℓ = ቊ

𝜆𝑘 if k = ℓ

0 if k ≠ ℓ

Therefore

➢The variance of the k’th principle components is 𝜆𝑘.

⇒ principle axis 1 has the highest variance, axis 2 has the next highest variance, …, 
and axis M has the lowest variance.

➢The covariance of different principle components is zero.

➢⇒ Covariance among each pair of the principal axes is zero.
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▪ Theorem: Suppose 𝐴 ∈ ℝ𝑚×𝑛, then there exists a factorization, called singular 
value decomposition of 𝐴, of the form

𝐴 = 𝑈Σ𝑉𝑇

where 𝑈 ∈ ℝ𝑚×𝑚 and V ∈ ℝ𝑛×𝑛 are orthogonal matrices, Σ ∈ ℝ𝑚×𝑛 is a diagonal 
matrix with non-negative numbers on the diagonal.

Proof: Since 𝐴𝑇𝐴 ∈ ℝ𝑛×𝑛 is symmetric and semi-positive definite, it can be factorized in the 
form

𝐴𝑇𝐴 = 𝑉𝛬𝑉𝑇

where V = [𝒗1, … , 𝒗𝑛] ∈ ℝ𝑛×𝑛 is orthogonal matrix, 𝛬 = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑛) ∈ ℝ𝑛×𝑛 is a diagonal 
matrix of eigenvalues arranged in non-ascending order 

𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 ≥ 0
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Proof (cont’d): Let  𝑝 = max 𝑖: 𝜆𝑖 > 0 be the rank of 𝐴. Define 𝒖𝑖 =
𝐴𝒗𝑖

𝜆𝑖
∈ ℝ𝑚 for 𝑖 = 1,… , 𝑝. Then

𝒖𝑖 , 𝒖𝑗 =
𝐴𝒗𝑖

𝜆𝑖
,
𝐴𝒗𝑗

𝜆𝑗
=

𝒗𝑖 , 𝐴
𝑇𝐴𝒗𝑗

𝜆𝑖 𝜆𝑗
=

𝜆𝑗

𝜆𝑖
𝒗𝑖 , 𝒗𝑗 = 𝛿𝑖𝑗 = ቊ

1, if i = j
0, if i ≠ j

That is, 𝒖1, … , 𝒖𝑝 are pairwise orthogonal unit vectors in ℝ𝑚.  By Gram-Schmidt process we can 
construct 𝒖𝑝+1, … , 𝒖𝑚 ∈ ℝ𝑚(if 𝑝 < 𝑚) such that 𝒖1, … , 𝒖𝑚 are pairwise orthogonal unit vectors.  This 
gives orthogonal matrix U = [𝒖1, … , 𝒖𝑚] ∈ ℝ𝑚×𝑚. 

We have the following claim: 

Claim: 𝒖𝑖
𝑇𝐴𝒗𝑗 = 𝜆𝑗𝛿𝑖𝑗 for 𝑖 = 1,… ,𝑚, j = 1,… , 𝑛

Proof: If j ≤ 𝑝, then 𝐴𝒗𝑗 = 𝜆𝑗𝒖𝑗, therefore 𝒖𝑖
𝑇𝐴𝒗𝑗 = 𝜆𝑗𝒖𝑖

𝑇𝒖𝑗 = 𝜆𝑗𝛿𝑖𝑗.

If j > 𝑝, since 𝒗𝑗 is an eigenvector of 𝐴𝑇𝐴 with associating eigenvalue 𝜆𝑗 = 0, therefore

𝐴𝒗𝑗
𝑇
𝐴𝒗𝑗 = 𝒗𝑗

𝑇𝐴𝑇𝐴𝒗𝑗 = 𝒗𝑗
𝑇𝜆𝑗𝒗𝑗 = 0

Hence 𝐴𝒗𝑗 = 𝟎 and 𝒖𝑖
𝑇𝐴𝒗𝑗 = 0 = 𝜆𝑗𝛿𝑖𝑗. Q.E.D.

Therefore Σ = 𝑈𝑇𝐴𝑉 = 𝑑𝑖𝑎𝑔( 𝜆1, … , 𝜆𝑝, 0, … 0) ∈ ℝ𝑚×𝑛 is a diagonal matrix. 

Therefore  𝐴 = 𝑈Σ𝑉𝑇. Q.E.D.
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