

Pei-Yuan Wu

Electrical Engineering Department National Taiwan University

OUT LINE

- The Lagrangian Dual Problem
 - Primal and Dual Problems
- Geometric Interpretation of the Lagrangian Dual
- Weak Duality
- Strong Duality
 - ≻Example

2021/12/10

LAGRANGIAN DUALITY

Primal Problem P

Minimize f(x)Subject to: $g_i(x) \le 0, i = 1, ..., m$ $h_i(x) = 0, i = 1, ..., \ell$ Variables: $x \in \mathcal{X}$

Lagrangian Dual Problem D

grangian Dual Problem D Maximize $\theta(\mathbf{u}, \mathbf{v}) = \inf_{x \in \mathcal{X}} \{ f(x) + \sum_{i=1}^{m} u_j g_i(x) + \sum_{i=1}^{\ell} v_j h_i(x) \}$ Subject to: $u_i \ge 0, i = 1, ..., m$ Variables: $\mathbf{u} \in \mathbb{R}^m$, $\mathbf{v} \in \mathbb{R}^\ell$

Lagrange multipliers

- > Inequality constraints $g_i(x) \le 0$ corresponds to nonnegative Lagrange multipliers u_i .
- \succ Equality constraints $h_i(x) = 0$ corresponds to unrestricted Lagrange multipliers v_i .

Duality theorem: (Informal statement)

Under certain convexity assumptions and suitable constraint qualifications, the primal and dual problems have equal optimal objective values.

Primal Problem P Minimize f(x)Subject to: $g(x) \le 0$

Variables: $x \in \mathcal{X}$

Primal minimum z^*

Primal minimum z^* = Dual maximum $\theta(u^*)$

WEAK DUALITY

Primal Problem P

Minimize f(x)Subject to: $g_i(x) \le 0, i = 1, ..., m$ $h_i(x) = 0, i = 1, ..., \ell$ Variables: $x \in X$

Lagrangian Dual Problem D

Maximize $\theta(\mathbf{u}, \mathbf{v}) = \inf_{x \in \mathcal{X}} \{ f(x) + \sum_{i=1}^{m} u_i g_i(x) + \sum_{i=1}^{\ell} v_i h_i(x) \}$ Subject to: $u_i \ge 0, i = 1, ..., m$ Variables: $\mathbf{u} \in \mathbb{R}^m, \mathbf{v} \in \mathbb{R}^{\ell}$

Duality gap: Difference between primal minimum and dual maximum

Weak Duality Theorem:

For arbitrary primal feasible solution x and dual feasible solution (\mathbf{u}, \mathbf{v}) , one has $f(x) \ge \theta(\mathbf{u}, \mathbf{v})$

Proof:

$$\theta(\mathbf{u}, \mathbf{v}) = \inf_{\tilde{x} \in \mathcal{X}} \left\{ f(\tilde{x}) + \sum_{i=1}^{m} u_i g_i(\tilde{x}) + \sum_{i=1}^{\ell} v_i h_i(\tilde{x}) \right\}$$
$$\leq f(x) + \sum_{i=1}^{m} u_i g_i(x) + \sum_{i=1}^{\ell} v_i h_i(x) \leq f(x)$$

2021/12/10

STRONG DUALITY

Primal Problem P Minimize f(x)Subject to: $g_i(x) \le 0, i = 1, ..., m$ $h_i(x) = 0, i = 1, ..., \ell$ Variables: $x \in X$

Lagrangian Dual Problem D Maximize $\theta(\mathbf{u}, \mathbf{v}) = \inf_{x \in \mathcal{X}} \{ f(x) + \sum_{i=1}^{m} u_i g_i(x) + \sum_{i=1}^{\ell} v_i h_i(x) \}$ Subject to: $u_i \ge 0, i = 1, ..., m$ Variables: $\mathbf{u} \in \mathbb{R}^m, \mathbf{v} \in \mathbb{R}^{\ell}$

Theorem (Strong Duality Theorem)

Let X be a nonempty convex set in \mathbb{R}^n . Let $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}^m$ be convex, and $h : \mathbb{R}^n \to \mathbb{R}^\ell$ be affine. Suppose that the following constraint qualification is satisfied. There exists an $\hat{x} \in X$ such that $g(\hat{x}) < 0$ and $h(\hat{x}) = 0$, and $0 \in int h(X)$, where $h(X) = \{h(x) : x \in X\}$. Then,

$$\inf\{f(x): x \in X, g(x) \le 0, h(x) = 0\} = \sup\{\theta(u, v): u \ge 0\}, \quad (5)$$

where $\theta(u, v) = \inf\{f(x) + u^{\mathsf{T}}g(x) + v^{\mathsf{T}}h(x) : x \in X\}$. Furthermore, if the inf is finite, then $\sup\{\theta(u, v) : u \ge 0\}$ is achieved at $(\overline{u}, \overline{v})$ with $\overline{u} \ge 0$. If the inf is achieved at \overline{x} , then $\overline{u^{\mathsf{T}}}g(\overline{x}) = 0$.

