SUPPORT VECTOR MACHINE KERNEL METHODS

Pei-Yuan Wu Electrical Engineering Department National Taiwan University

SVM 2019 Fall 2021/12/10

OUT-LINE

- Representer Theorem
- Primal and Dual Formulations
- Kernel trick for nonlinear separable cases

SVM 2019 Fall 2021/12/10

SVM - REVIEW

We have seen that in SVM we learn a linear classifier

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \mathbf{b}$$

by solving an optimization problem over (w, b):

$$\min_{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i=1}^{N} \max(0, 1 - y_{i} f(\mathbf{x}_{i}))$$

- > This quadratic optimization problem is known as the primal problem.
- By introducing the representation theorem, we can reformulate SVM as learning a linear classifier

$$f(\mathbf{x}) = \sum_{i=1}^{N} a_i(\mathbf{x}_i^T \mathbf{x}) + b$$

by solving an optimization problem (to be introduced later) over a_i .

> This is know as the dual problem, and we will look at the advantages of this formulation.

REPRESENTER THEOREM

• Recall SVM Primal problem:

$$\frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b))$$
regularization hinge loss

Representer Theorem on SVM: The global optimal solution of SVM takes the form $w = \sum_{i=1}^{N} \alpha_i y_i x_i$.

Proof: Express $w = w_{\parallel} + w_{\perp}$, where $w_{\parallel} \in Span(x_1, ..., x_N)$, w_{\perp} is in the subspace orthogonal to $Span(x_1, ..., x_N)$. Note that

$$\forall i : \mathbf{w}_{\perp}^{T} \mathbf{x}_{i} = 0 : \mathbf{w}^{T} \mathbf{x}_{i} = \mathbf{w}_{\parallel}^{T} \mathbf{x}_{i}$$
$$: \mathbf{w}_{\perp}^{T} \mathbf{w}_{\parallel} = 0 : \|\mathbf{w}\|^{2} = \|\mathbf{w}_{\parallel}\|^{2} + \|\mathbf{w}_{\perp}\|^{2}$$

In other words, w_{\perp} does not influence hinge loss, but may increase regularization loss. So if $(w_{\parallel} + w_{\perp}, b)$ is optimal, then (w_{\parallel}, b) must be optimal.

In SVM, it suffices to assume $w = \sum_{i=1}^{N} \alpha_i y_i x_i$

REPRESENTER THEOREM

• Substitute $w = \sum_{i=1}^{N} \alpha_i y_i x_i$ into $f(x) = w^T x + b$ and $||w||^2$, we get

$$f(x) = \left(\sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i\right)^T \mathbf{x} + b = \sum_{i=1}^{N} \alpha_i y_i (\mathbf{x}_i^T \mathbf{x}) + b$$
$$\|\mathbf{w}\|^2 = \left(\sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i\right)^T \left(\sum_{j=1}^{N} \alpha_j y_j \mathbf{x}_j\right) = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

Hence, an equivalent optimization problem is over α_i

Primal problem:

$$\min_{\boldsymbol{w} \in \mathbb{R}^{d}, b \in \mathbb{R}, \xi_{1}, \dots, \xi_{N} \geq 0} \frac{1}{2} \|\boldsymbol{w}\|^{2} + C \sum_{i=1}^{N} \xi_{i}$$
subject to $y_{i}(\boldsymbol{w}^{T}\boldsymbol{x}_{i} + b) \geq 1 - \xi_{i}, \forall i$

Optimization problem over α_i

$$\min_{\boldsymbol{w} \in \mathbb{R}^{d}, b \in \mathbb{R}, \xi_{1}, \dots, \xi_{N} \geq 0} \frac{1}{2} \|\boldsymbol{w}\|^{2} + C \sum_{i=1}^{N} \xi_{i}$$

$$\text{subject to } y_{i}(\boldsymbol{w}^{T}\boldsymbol{x}_{i} + b) \geq 1 - \xi_{i}, \forall i$$

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^{N}, b \in \mathbb{R}, \xi_{1}, \dots, \xi_{N} \geq 0} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} (\boldsymbol{x}_{i}^{T}\boldsymbol{x}_{j}) + C \sum_{i=1}^{N} \xi_{i}$$

$$\text{Subject to } y_{i} \left(\sum_{j=1}^{N} \alpha_{j} y_{j} (\boldsymbol{x}_{j}^{T}\boldsymbol{x}_{i}) + b \right) \geq 1 - \xi_{i}, \forall i$$

2N variables

(3~6 hour lectures)

and **A FEW** more steps are required to complete the derivation (with N variables)...

SVM PRIMAL AND DUAL PROBLEMS

N is number of training points, and d is dimension of feature vector x.

Primal problem: for $w \in \mathbb{R}^d$, $b \in \mathbb{R}$

$$\min_{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i=1}^{N} \max(0, 1 - y_{i} f(\mathbf{x}_{i}))$$

Dual problem: for $\alpha \in \mathbb{R}^N$ (Formal proof granted after introduction of duality theorem)

$$\max_{\alpha_1,\dots,\alpha_N\geq 0} \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j (\boldsymbol{x}_i^T \boldsymbol{x}_j)$$

$$\text{KKT Condition:}$$

$$y_i (\boldsymbol{w}^T \boldsymbol{x}_i + b) > 1 \Rightarrow \xi_i = 0, \alpha_i = 0$$

$$y_i (\boldsymbol{w}^T \boldsymbol{x}_i + b) < 1 \Rightarrow \xi_i > 0, \alpha_i = C$$

Subject to $0 \le \alpha_i \le C$, $\forall i$, and $\sum_{i=1}^N \alpha_i y_i = 0$

- Need to learn d parameters for primal, and N parameters for dual
- If $N \ll d$ then more efficient to solve for α than w. (d can even be infinite! See Gaussian-RBF SVM to be introduced later)
- Dual form only involves $x_i^T x_i$. We will return to why this is an advantage when we look at kernels.

PRIMAL AND DUAL FORMULATIONS

• Primal version of classifier:

$$f(x) = \mathbf{w}^T \mathbf{x} + b$$

• Dual version of classifier:

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i(\mathbf{x}_i^T \mathbf{x}) + b$$

• At first sight the dual form appears to have the disadvantage of a K-NN classifier — it requires the training data points x_i . However, many of the α_i 's are zero. The ones that are non-zero define the support vectors x_i .

KKT Condition:

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) > 1 \Rightarrow \xi_i = 0, \alpha_i = 0$$

 $y_i(\mathbf{w}^T \mathbf{x}_i + b) < 1 \Rightarrow \xi_i > 0, \alpha_i = C$

HANDLING DATA THAT IS NOT LINEARLY SEPARABLE

introduce slack variables

$$\min_{\mathbf{w} \in \mathbb{R}^d, \xi_i \in \mathbb{R}^+} ||\mathbf{w}||^2 + C \sum_{i=1}^N \xi_i$$

subject to

$$y_i\left(\mathbf{w}^{ op}\mathbf{x}_i + b
ight) \geq 1 - \xi_i ext{ for } i = 1 \dots N$$

linear classifier not appropriate

??

SOLUTION 1: USE POLAR COORDINATES

- Data is linearly separable in polar coordinates
- Acts non-linearly in original space

$$\Phi: \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \to \left(\begin{array}{c} r \\ \theta \end{array}\right) \quad \mathbb{R}^2 \to \mathbb{R}^2$$

SOLUTION 2: MAP DATA TO HIGHER DIMENSION

$$\Phi: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \to \begin{pmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \end{pmatrix} \quad \mathbb{R}^2 \to \mathbb{R}^3$$

- Data is linearly separable in 3D
- This means that the problem can still be solved by a linear classifier

SVM CLASSIFIERS IN A TRANSFORMED FEATURE SPACE

Learn classifier linear in \mathbf{w} for \mathbb{R}^D :

$$f(\mathbf{x}) = \mathbf{w}^{\top} \Phi(\mathbf{x}) + b$$

 $\Phi(x)$ is a feature map

PRIMAL CLASSIFIER IN TRANSFORMED FEATURE SPACE

Classifier, with $w \in \mathbb{R}^D$

$$f(x) = \mathbf{w}^T \Phi(\mathbf{x}) + b$$

Learning, for $w \in \mathbb{R}^D$

$$\min_{\mathbf{w} \in \mathbb{R}^{D}, b \in \mathbb{R}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i=1}^{N} \max(0, 1 - y_{i} f(\mathbf{x}_{i}))$$

- Simply map x to $\Phi(x)$ where data is separable
- Solve for w in high dimensional space \mathbb{R}^D
- If $D \gg d$ then there are many more parameters to learn for w. Can this be avoided?

DUAL CLASSIFIER IN TRANSFORMED FEATURE SPACE

Classifier:

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i(\mathbf{x}_i^T \mathbf{x}) + b$$
$$f(x) = \sum_{i=1}^{N} \alpha_i y_i \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}) + b$$

Learning:

$$\max_{\alpha_{1},...,\alpha_{N} \geq 0} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{i} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$

$$\max_{\alpha_{1},...,\alpha_{N} \geq 0} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{i} \Phi(\mathbf{x}_{i})^{T} \Phi(\mathbf{x}_{j})$$

Subject to $0 \le \alpha_i \le C$, $\forall i$, and $\sum_{i=1}^N \alpha_i y_i = 0$

- $k(x_i, x_j) = \Phi(x_i)^T \Phi(x_j)$ is called **kernel** function.
- Note that $\Phi(\mathbf{x})$ only occurs in pairs $\Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j)$
 - \triangleright Once the scalar products are computed, only the N dimensional vector α needs to be learnt.
 - > No need to learn in the D dimensional space, as it is for the primal.

KERNEL SVM

Classifier:

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b$$

• Learning:

$$\max_{\alpha_1,\dots,\alpha_N\geq 0} \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j \mathbf{k}(\mathbf{x}_i, \mathbf{x}_j)$$

Subject to $0 \le \alpha_i \le C$, $\forall i$, and $\sum_{i=1}^N \alpha_i y_i = 0$

Kernel Trick

- Classifier can be learnt and applied without explicitly computing $\Phi(x)$
- All that is required is the kernel k(x, x').
- Complexity of learning depends on N (typically $O(TN^2)$) but not on D.

AND SPECIAL TRANSFORMATIONS

Spectral Transform

Kernel Function

$$\Phi \colon \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} \sqrt{2}x_1x_2 \\ x_1^2 \\ x_2^2 \end{bmatrix}$$

$$\Phi \colon \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} \sqrt{2}x_1 x_2 \\ x_1^2 \\ x_2^2 \end{bmatrix} \qquad \Phi(\mathbf{x})^T \Phi(\mathbf{z}) = \begin{bmatrix} \sqrt{2}x_1 x_2 \\ x_1^2 \\ x_2^2 \end{bmatrix}^T \begin{bmatrix} \sqrt{2}z_1 z_2 \\ z_1^2 \\ z_2^2 \end{bmatrix}$$
$$= 2x_1 z_1 x_2 z_2 + x_1^2 z_1^2 + x_2^2 z_2^2$$
$$= (x_1 z_1 + x_2 z_2)^2$$

$$\Phi \colon \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} \frac{1}{\sqrt{2}}x_1 \\ \sqrt{2}x_2 \\ \sqrt{2}x_1x_2 \\ x_1^2 \\ x_2^2 \end{bmatrix}$$

$$\Phi \colon \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ \sqrt{2}x_1 \\ \sqrt{2}x_2 \\ \sqrt{2}x_1x_2 \\ x_1^2 \\ x_2^2 \end{bmatrix} \quad \Phi(\mathbf{x})^T \Phi(\mathbf{z}) = \begin{bmatrix} 1 \\ \sqrt{2}x_1 \\ \sqrt{2}x_2 \\ \sqrt{2}x_1x_2 \\ x_1^2 \\ x_2^2 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2}z_1 \\ \sqrt{2}z_2 \\ \sqrt{2}z_1z_2 \\ z_1^2 \\ z_2^2 \end{bmatrix}$$

$$= 1 + 2x_1z_1 + 2x_2z_2 + 2x_1z_1x_2z_2 + x_1^2z_1^2 + x_2^2z_2^2$$

= $(1 + x_1z_1 + x_2z_2)^2$

KERNEL EXAMPLES

Feature map:
$$\Phi(x) = \begin{bmatrix} \phi_1(x) \\ \phi_2(x) \\ \vdots \\ \phi_D(x) \end{bmatrix}$$

- Let $x, x' \in \mathbb{R}^d$, where we denote $x = (x_1, ..., x_d)$.
- Linear kernels: $k(x, x') = x^T x'$
- Polynomial kernels: $k(x, x') = (1 + x^T x')^m$, for any $m \in \mathbb{N}$.
 - Φ(x) contains all polynomials up to degree m. $φ_i(x) \propto x_1^{n_1} x_2^{n_2} \dots x_d^{n_d}$

where
$$n_1 + \cdots + n_d \leq m, n_1, \dots, n_d \in \mathbb{N} \cup \{0\}$$

- Feature space dimension $D = {d+m \choose d}$
- Gaussian kernels: $k(x, x') = exp\left(-\frac{\|x x'\|^2}{2\sigma^2}\right)$ for $\sigma > 0$
 - \rightarrow $\Phi(x)$ contains all functions of the form

$$\phi_j(\mathbf{x}) \propto \left(\frac{x_1}{\sigma}\right)^{m_1} \left(\frac{x_2}{\sigma}\right)^{m_2} \dots \left(\frac{x_d}{\sigma}\right)^{m_d} e^{-\frac{\|\mathbf{x}\|^2}{2\sigma^2}}$$

where $n_1, ..., n_d \in \mathbb{N} \cup \{0\}$

 $_{\text{SVM 2019 Fall}}$ > Feature space dimension $D = \infty$

SPECTRAL TRANSFORMATION OF GAUSSIAN

For simplicity, consider d = 1. Then

$$exp\left(-\frac{(x-z)^{2}}{2\sigma^{2}}\right) = exp\left(-\frac{x^{2}-2xz+z^{2}}{2\sigma^{2}}\right)$$

$$= exp\left(-\frac{x^{2}}{2\sigma^{2}}\right)exp\left(\frac{xz}{\sigma^{2}}\right)exp\left(-\frac{z^{2}}{2\sigma^{2}}\right)$$

$$= exp\left(-\frac{x^{2}}{2\sigma^{2}}\right)\left(1+\frac{xz}{\sigma^{2}}+\dots+\frac{1}{n!}\left(\frac{xz}{\sigma^{2}}\right)^{n}+\dots\right)exp\left(-\frac{z^{2}}{2\sigma^{2}}\right)$$

$$= exp\left(-\frac{x^{2}}{2\sigma^{2}}\right)\left[\begin{array}{c} 1\\ x/\sigma\\ \vdots\\ (x/\sqrt{n!}\sigma)^{n}\\ \vdots\\ \end{array}\right]^{T}\left[\begin{array}{c} 1\\ z/\sigma\\ \vdots\\ \left(z/\sqrt{n!}\sigma\right)^{n}\\ \end{array}\right]exp\left(-\frac{z^{2}}{2\sigma^{2}}\right)$$

 $=\Phi(x)^T\Phi(z)$

Feature map:
$$\Phi(x) = exp\left(-\frac{x^2}{2\sigma^2}\right)\begin{bmatrix} 1 \\ x/\sigma \\ \vdots \\ \left(x/\sqrt{n!}\sigma\right)^n \\ \vdots \end{bmatrix}$$
2021/12/10

GAUSSIAN RADIAL BASIS FUNCTION (RBF) SVM

Classifier: weight (may be zero) support vector

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i k(\mathbf{x}_i, \mathbf{x}) + b$$

Learning:

$$\max_{\alpha_1,\dots,\alpha_N\geq 0} \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$$

Subject to $0 \le \alpha_i \le C$, $\forall i$, and $\sum_{i=1}^N \alpha_i y_i = 0$

Gaussian kernel: $k(x, x') = exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right)$

Gaussian Radial Basis Function SVM

$$f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i y_i exp\left(-\frac{\|\mathbf{x} - \mathbf{x}_i\|^2}{2\sigma^2}\right) + b$$

Radial basis function kernel:

$$k(x, z)$$
 only depends on $||x - z||$

RBF KERNEL SVW EXAMPLE

data is not linearly separable in original feature space

19

$$\sigma = 1.0$$
 $C = \infty$

$$f(x) = 0$$

$$\int_{0.6}^{0.6} \int_{0.8}^{0.2} \int_{0.6}^{0.6} \int_{0.8}^{0.6} \int_{0.8}^{0.2} \int_{0.6}^{0.2} \int_{0.4}^{0.2} \int_{0.2}^{0.2} \int_{0.4}^{0.2} \int_{0.6}^{0.2} \int_{0.8}^{0.2} \int_{$$

$$f(x) = \sum_{i=1}^{N} \alpha_i y_i exp\left(-\frac{\|x - x_i\|^2}{2\sigma^2}\right) + b$$

$\sigma = 1.0$ C = 100

Decrease C, gives wider (soft) margin

$\sigma = 1.0$ C = 10

$\sigma = 1.0$ $C = \infty$

$$\sigma = 0.25$$
 $C = \infty$

Decrease sigma, moves towards nearest neighbor classifier

$\sigma = 0.1$ $C = \infty$

KERNEL TRICK - SUMMARY

- Data may be linearly separable in the high dimensional space, but not linearly separable in the original feature space.
- Classifiers can be learnt for high dimensional features spaces, without actually having to map the points into the high dimensional space.
- Kernels can be used for an SVM because of the scalar product in the dual form, but can also be used elsewhere they are not tied to the SVM formalism.
- Kernels apply also to objects that are not vectors.

SVM 2019 Fall 2021/12/10 **26**