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OUT-LINE

= Representer Theorem
= Primal and Dual Formulations

= Kernel trick for nonlinear separable cases
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SVM — REVIEW

= We have seen that in SVM we learn a linear classifier
f(x) = wix+b

by solving an optimization probler}\r} over (w, b):

1

. L 2 § — v .

wefl{lc},geﬁ&z Iwil™ + C. 1maX(O’1 yif (X))
=

» This quadratic optimization problem is known as the primal problem.

= By introducing the representation theorem, we can reformulate SVM as
learning a linear classifier

N
F0) =) a(xx) +b

=1
by solving an optimization problem (to be introduced later) over q;.

> This is know as the dual problem, and we will look at the advantages
of this formulation.
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REPRESENTER THEOREM

= Recall SVM Primal problem: y
1
w2 + CZ max(0, 1 — y:(w'x; + b))
=1 .

regularization hinge loss

| Representer Theorem on SVM: The global optimal solution of SVM takes the
: formw = YN, a;v;x;.
Proof: Expressw = w + w,, where w; € Span(x4, ..., xy), W, is in the subspace
orthogonal to Span(x4, ..., xy). Note that
Vivw,Tx;=0:wix, =wx;
2
WLTW” =0 ||W||2 = ||W|||| + ||WJ_||2
In other words, w, does not influence hinge loss, but may increase
regularization loss. So if (w; + w,, b) is optimal, then (w|, b) must be optimal.

In SVM, it suffices to assume w = Y1, a;y;X;
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REPRESENTER THEOREM

= Substitute w = YV, a;y;x; into f(x) = w'x + b and ||w||?, we get
T

N N
f(x) = Z a;yixi | x+b= Z a;y;(x;"x) + b
i=1 i=1
N T N N
lw||* = Z a;yiX; z aAjyiX; Z Z a;a;y;yi(x;" X))
i=1 j= i=1j=1

Hence, an equivalent optimization problem is over «;

Primal problem: Optimization problem over «;

2 CZ M) Y
WE]Rd berﬁl%lg €N> 2 ||W” + El aeRN’berﬁlg’lg N>0 2 @i a]yly] (xl x]) + gl

i=1 j=
subject to y;(wix; + b) > 1 — Subject to yi{Xai_, &y, (x] x)+b)=1- fi;Vl

2N variables

(3~6 hour lectures)

and A FEW more steps are required to complete
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SVM PRIMAL AND DUAL PROBLEMS

N is number of training points, and d is dimension of feature vector x.

Primal problem:for w € R4, b € R

weR4 beR

N
1
min = [|wll? + cz max(0, 1 — y; £ (x;))
i=1

Dual problem: for &« € RY (Pormal proof granted after introduction of duality theorem)

p m%,’§>o§ :“l - _2 , 2 :“lafy i O X RRT Gondition:
i=1j= yl-(wal-+b)>1:>El-=0,ai=O
T —
Subjectto 0 < a; < C,Vi,and YN, a;y; =0 yiw'x; +bh) <1=¢§>0,a;=C

= Need to learn d parameters for primal, and N parameters for dual

= [f N < d then more efficient to solve for a than w. (d can even be infinite! See
Gaussian-RBF SVM to be introduced later)

= Dual form only involves xiij . We will return to why this is an advantage when we

look at kernels. @
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PRIMAL AND DUAL FORMULATIONS

= Primal version of classifier:
f(x) = wix+b

= Dual version of cl%ssifier:

FO) =) ayix %) + b

=1

= At first sight the dual form appears to have
the disadvantage of a K-NN classifier — it
requires the training data points x;. However,
many of the ¢;‘s are zero. The ones that are o
non-zero define the support vectors x;. fx) =) owi(xi x)+b o

i \ v ® ¢
support vectors

KKT Condition:
yi(WTxl- +b) >1= fi = O,Cll' =0
yiwlx; +b)<1=2& >0,a;=C
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HANDLING DATA THAT IS NOT LINEARLY SEPARABLE

* g A A
e %o |A A,

® oho| ada 4
* 0 o |auta
e ®| A AA

subject to
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* introduce slack vanahles
IIW |12 +C Z £

yt-[w_:-:i—l—b) >1—¢ fori=1...N

* [inear classifier not appropriate

77
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1 USE POLAR CORDINHTES
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« Data is linearly separable in polar coordinates

« Acts non-linearly in original space
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SOLUTION 2: MAP DATA TO HIGHER DIMENSION

£I —_ —
o2 \/}EIL‘]_:EE
A
Xq A A A
A
A . A
0 A . "' &
A _.-'_. A R —
A * N
"
A A & A
| > 1
0 Xy

» Data is linearly separable in 3D
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» This means that the problem can still be solved by a linear classifier
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SVM CLASSIFIERS IN A TRANSFORMED FEATURE SPACE

f(x)=0

®:x — d(x) R RP

Learn classifier linear in w for RL:

fx)=w'd(x)+0

d(x) is a feature map
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PRIMAL CLASMIFIER IN TRANSFORMED FEATURE SPACE

Classifier, with w € RP
f(x)=wldx)+b

Learning, for w € R?

N

1

. - 2 — . .

i lwl||? + C Z max(0,1 — y;f(x;))
=

= Simply map x to ¢(x) where data is separable
= Solve for w in high dimensional space R”

= If D > d then there are many more parameters to learn for w. Can this be avoided?
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DUAL CLASSIFIER IN TRANSFORMED FEATURE SPACE

= Classifier:

N
FO) =) ayix"x) + b
i=1
N D « k(x;,x;) = ®(x)Td(x;) is called kernel function.
f(x) = 2 a;y; ®(x) ®(x) + b * Note that ®(x) only occurs in pairs CID(xl-)TCID(xj)
=1 » Once the scalar products are computed, only
» Learning: the N dimensional vector a needs to be learnt.

» No need to learn in the D dimensional space,

N N N
1 . . .
alm%’\fzo z a; — Ez z a;q;y;Yi (xiij) ) as it is for the primal.

N 1 N N
a1mgzj§20 Z i EZ 2 ai“j)’i)’icb(xi)TCD(xj)

Subjectto 0 < a; < C,Vi,and Y, a;y; = 0
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KERNEL

VM

= Classifier:

N Kernel Trick
f(x) = Z a;y:k(x;, %) + b " C!ass1f1er can be learnt aI}d applied
— without explicitly computing ¢ (x)
- Learning: = All that is required is the kernel k(x, x').
N e » Complexity of learning depends on N
o max, z a; — Ez z a;a;y;yik(x;, x;) (typically O(TN?)) but not on D.
=1 i=1j=1

Subjectto 0 < a; < C,Vi,and Y, a;y; = 0
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KERNEL AND SPECIAL TRANSFORMATIONS

Spectral Transform Kernel Function
— - _ _T — -
x4 ﬁxﬂcz \/Ex1x2 \/52122
o: [0~ 22 | W ewe@=| 2 || 2
X3 | x; || Z

= 2X121 X225 + X{2E + X572

= (X121 + X225)*

1 7 -1 77 1
\/ixl \/Exl \/EZl
o [xll L \/ixz » o( )Tq)( ) \/Exz \/EZZ
. X Z) =
X2 \/ixle \/Exl.X'z \/EZ:[ZZ
x2 x2 z%
x2 x2 z2

=14 2x12) + 2X,2y + 2x,21X225 + X227 + x222

= (1 + X121 + x2Z2)2
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KERNEL EXAMPLES

Let x,x' € R%, where we denote x = (xy, ..., x4).

Feature

= Linear kernels: k(x, x") = xTx’
= Polynomial kernels: k(x,x") = (1 + x"x")™, for any m € N.

> @(x) contains all polynomials up to degree m.
¢i(x) o< x™Mxy"2 L xy"

wheren; + -+ +nyz <m,nq,..,ng € NU {0}

> Feature space dimension D = (dtlm)

: _ N _ || x—x1]|
= Gaussian kernels: k(x, x') = exp (— — ) forc >0

> @(x) contains all functions of the form

3,00 e ()™ (Z2)™ . (2)™ e

o o o
where nq, ...,ng; € N U {0}

svme09ray > Feature space dimension D = o

map:
d(x) =

(]52.(x)

1 (x)]

—qu.(x)-
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SPECTRAL TRANSFORMATION OF GAUSSIAN KERNEL

For simplicity, consider d = 1Thn

((—)
exp

e

) (

2 _2xz+z

20

)

)

o (x/\/EG)n




GAUSSIAN RADIAL BASIS FUNCTION (RBF) SVIM

: llx—ar|?
Classifier: Weight (may be zero) support vector Gaussian kernel: k(x, x') = exp (_ )

202

N Gaussian Radial Basis Function SVM

FO) =) ayik(xx) +b C I — i1
i=1 flx) = 2 a;yiexp (‘ 252 ) +Db
Learning: i=1 ’
N N N
1 K Radial basis function kernel:
a0 2 52 Z idYiYj (xi’xf) k(x, z) only depends on ||x — z||
=1 i=1j

Subject to 0 S a; < C,V andZ a;y; =0
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RBF KER!

EL SVM EXAMPLE
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data is not linearly separable in original feature space
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0.5

flx) =

o
(]

feature y

=

0.2

fGo) =-1

0.3 06 -0.4 0.2 ] 0.2 0.4 0B 0.8 1
feature x

N

x — x;||2
f(x) = E a;yiexp (— | zl” >+ b
_ 20
=1 2021/12/10
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Decrease C, gives wider (soft) margin
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Decrease sigma, moves towards nearest neighbor classifier
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KERNEL TRICK - SUMMARY

= Data may be linearly separable in the high dimensional space, but not linearly
separable in the original feature space.

= Classifiers can be learnt for high dimensional features spaces, without actually
having to map the points into the high dimensional space.

= Kernels can be used for an SVM because of the scalar product in the dual form, but
can also be used elsewhere — they are not tied to the SVM formalism.

= Kernels apply also to objects that are not vectors.
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