SUPPORT VECTOR MACHINE OPTIMIZATION

Pei-Yuan Wu Electrical Engineering Department National Taiwan University

SVM 2019 Fall 2021/12/10

OUT-LINE

- Loss function for SVM
- Gradient Descent Algorithm

SVM 2019 Fall 2021/12/10

OPTIMIZATION

• Learning an SVM has been formulated as a constrained optimization problem over w and ξ

$$\min_{\boldsymbol{w} \in \mathbb{R}^{d}, b \in \mathbb{R}, \xi_{1}, \dots, \xi_{N} \geq 0} \frac{1}{2} \|\boldsymbol{w}\|^{2} + C \sum_{i=1}^{N} \xi_{i}$$
 subject to $y_{i}(\boldsymbol{w}^{T}\boldsymbol{x}_{i} + b) \geq 1 - \xi_{i}$, for $i = 1, \dots, N$

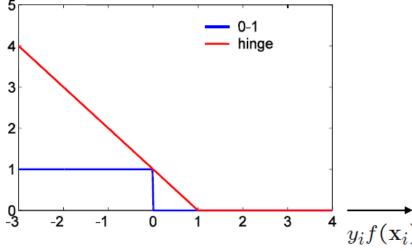
• The constraint $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i$, can be written more concisely as

$$y_i f(\mathbf{x}_i) \ge 1 - \xi_i$$

which, together with $\xi_i \ge 0$, is equivalent to $\xi_i \ge \max(0, 1 - y_i f(x_i))$

 Hence the learning problem is equivalent to the unconstrained optimization problem over w

$$\min_{\boldsymbol{w} \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{2} \|\boldsymbol{w}\|^{2} + C \sum_{i=1}^{N} \max(0, 1 - y_{i} f(\boldsymbol{x}_{i}))$$
regularization hinge loss

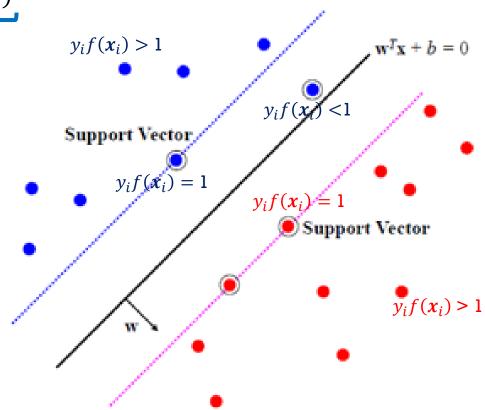


LOSS FUNCTION

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^N \max(0, 1 - y_i f(\boldsymbol{x}_i))$$
hinge loss

Points are in three categories:

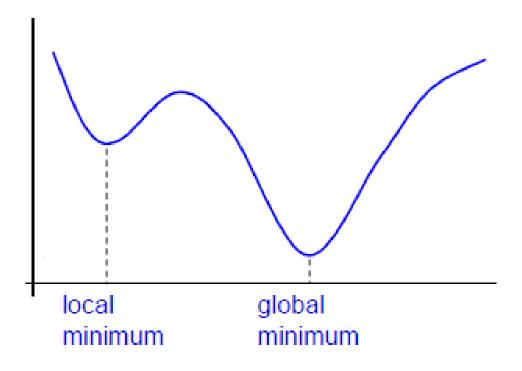
- $y_i f(x_i) > 1$
 - > Point is outside margin.
 - > No contribution to loss
- $y_i f(x_i) = 1$
 - ▶ Point is on margin.
 - > No contribution to loss.
- $y_i f(x_i) < 1$
 - > Point violates margin constraint.
 - > Contributes to loss



OPTIMIZATION CONTINUED

$$\min_{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i=1}^{N} \max(0, 1 - y_{i} f(\mathbf{x}_{i}))$$

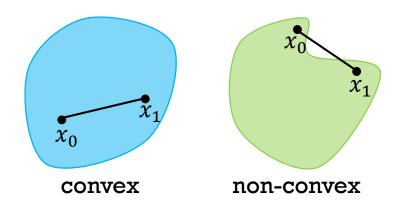
- Does this loss function have a unique minimal solution?
- Does the solution depend on the starting point of an iterative optimization algorithm (such as gradient descent)?



2021/12/10

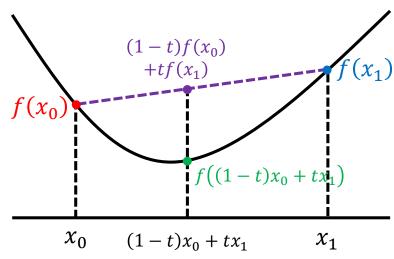
CONVEX FUNCTIONS

We say $\Omega \subset \mathbb{R}^d$ is convex if every $x_0, x_1 \in \Omega$ and $0 \le t \le 1$ satisfy $(1 - t)x_0 + tx_1 \in \Omega$



Let Ω be a convex set in \mathbb{R}^d . A function $f: \Omega \to \mathbb{R}$ is convex if every $x_0, x_1 \in \Omega$ and $0 \le t \le 1$ satisfy

$$f((1-t)x_0 + tx_1) \le (1-t)f(x_0) + tf(x_1)$$



Line joining $(x_0, f(x_0))$ and $(x_1, f(x_1))$ lies above the function graph

CONVEX FUNCTION PROPERTIES

$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^{N} \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b))$$

is convex

Lemma: Let Ω be a convex set in \mathbb{R}^d , f, g be convex functions on Ω , α , $\beta \geq 0$, then $\alpha f + \beta g$ is convex.

Proof: For every $x_0, x_1 \in \Omega$ and $0 \le t \le 1$, one has

$$f((1-t)x_0 + tx_1) \le (1-t)f(x_0) + tf(x_1)$$

$$g((1-t)x_0 + tx_1) \le (1-t)g(x_0) + tg(x_1)$$

Hence $(\alpha f + \beta g)((1 - t)x_0 + tx_1) \le (1 - t)(\alpha f + \beta g)(x_0) + t(\alpha f + \beta g)(x_1)$

non-negative sum of convex functions is convex

CONVEX FUNCTION PROPERTIES

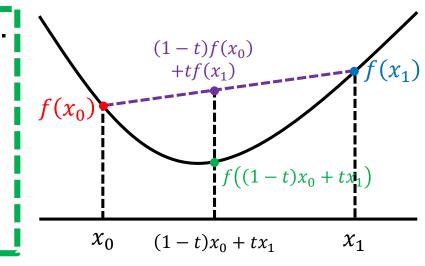
SVM's loss function:
$$\frac{1}{2}||w||^2 + C\sum_{i=1}^N \max(0, 1 - y_i(w^Tx_i + b))$$
is convex

- →local optimal is global optimal
- → Gradient descent always leads to global optimal regardless of initialization.

Lemma: Let Ω be a convex set in \mathbb{R}^d , f be a convex function on Ω . If $x_0, x_1 \in \Omega$ are local minimal points of f, then $f(x_0) = f(x_1)$.

Proof: WLOG assume $f(x_0) < f(x_1)$. For all $0 \le t < 1$, one has $f((1-t)x_0 + tx_1) \le (1-t)f(x_0) + tf(x_1) < f(x_1)$

That is, $f(x) < f(x_1)$ for all $x \in \{(1-t)x_0 + tx_1 : 0 \le t < 1\}$. Hence x_1 cannot be local minimal, leading to contraction.



If the loss function is convex, then a locally SVM 2019 Fall optimal point is globally optimal

GRADIENT DESCENT ALGORITHM FOR SYM

• To minimize a loss function $L(w_t)$ we use the iterative update $w_{t+1} \leftarrow w_t - \eta_t \nabla_{\!\!\!w} L(w_t)$

where η_t is the learning rate (at time t).

First, rewrite the optimization problem as an average

$$L(\mathbf{w}) = \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i f(\mathbf{x}_i))$$

where $\lambda = 1/(NC)$ and $f(x) = \mathbf{w}^T x + \mathbf{b}$

SUB-GRADIENT DESCENT ALGORITHM FOR SVM

$$L(w) = \frac{\lambda}{2} ||w||^2 + \frac{1}{n} \sum_{i=1}^{N} \mathcal{L}(x_i, y_i, w)$$

The iterative update is

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta_t \nabla_{\mathbf{w}} L(\mathbf{w}_t)$$

$$\leftarrow \mathbf{w}_t - \eta_t \left(\lambda \mathbf{w}_t + \frac{1}{n} \sum_{i=1}^n \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{x}_i, \mathbf{y}_i, \mathbf{w}_t) \right)$$

where η_t is the learning rate.

- In the Pegasos algorithm the learning rate is set at $\eta_t = \frac{1}{\lambda t}$
- Alternative: Stochastic gradient decent.

