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 Review of linear classifiers

 Linear separability

 Support Vector Machine (SVM) classifier

 The role of margin

 Optimal margin hyperplanes

 Soft Margin SVM and Slack variables
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 Given training data (𝒙𝑖 , 𝑦𝑖) for 𝑖 = 1. . . 𝑁, with 𝒙𝑖∈ℝ
𝑑 and 𝑦𝑖 ∈ {−1, +1}, learn a 

classifier f(x) such that

𝑓 𝒙𝑖 ቊ
≥ 0 , 𝑖𝑓 𝑦𝑖 = +1
< 0 , 𝑖𝑓 𝑦𝑖 = −1

i.e. 𝑦𝑖𝑓 𝒙𝑖 > 0 for a correct classification.
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Linearly separable

Not

Linearly separable



 A linear classifier has the form
𝑓 𝒙 = 𝒘𝑇𝒙 + 𝑏

 in 2D the discriminant is a line

 𝑤 is the normal to the line, and b the bias

 𝑤 is known as the weight vector
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 A linear classifier has the form
𝑓 𝒙 = 𝒘𝑇𝒙 + 𝑏

 in 3D the discriminant is a plane, and in n-D 
it is a hyperplane

 For a K-NN classifier it was necessary to 
`carry’ the training data

 For a linear classifier, the training data is 
used to learn w and then discarded

 Only w is needed for classifying new data
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maximum margin solution: most stable under perturbations of the inputs

What is the best w?
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 Since 𝒘𝑇𝒙 + 𝑏 = 0 and c(𝒘𝑇𝒙 + 𝑏) = 0 define the same plane, we have the freedom 
to choose the normalization of (𝒘, 𝑏)

 Choose normalization such that 

𝒘𝑇𝒙+ + 𝑏 = +1 for the positive support vectors 𝒙+

𝒘𝑇𝒙− + 𝑏 = −1 for the negative support vectors 𝒙−

 Then the margin is given by 
2

𝒘
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Goal: Find w to maximize margin



 Learning the SVM can be formulated as an optimization:

Maximize 
2

𝒘
subject to 𝒘𝑇𝒙𝑖 + 𝑏 ቊ

≥ 1, 𝑖𝑓 𝑦𝑖 = +1
≤ −1, 𝑖𝑓 𝑦𝑖 = −1

, for 𝑖 = 1,… , 𝑛

• Or equivalently

Minimize 
1

2
𝒘 𝟐 subject to 𝑦𝑖(𝒘

𝑇𝒙𝑖 + 𝑏) ≥ 1, for 𝑖 = 1,… , 𝑛

 This is a quadratic optimization problem subject to linear constraints and there is a 
unique minimum
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 the points can be linearly separated but there is a 
very narrow margin

 but possibly the large margin solution is better, 
even though one constraint is violated
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In general there is a trade off between the margin and the number of

mistakes on the training data
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• The optimization problem becomes

min
𝒘∈ℝ𝒅,𝑏∈ℝ,𝜉1,…,𝜉𝑁≥0

1

2
𝒘 𝟐 + 𝐶෍

𝑖=1

𝑁

𝜉𝑖

subject to 𝑦𝑖 𝒘
𝑇𝒙𝑖 + 𝑏 ≥ 1 − 𝜉𝑖, for 𝑖 = 1,… , 𝑛

• Every constraint can be satisfied if 𝜉𝑖 is sufficiently large

 C is a regularization parameter:

small C allows constraints to be easily ignored → large margin

large C makes constraints hard to ignore → narrow margin

C = ∞ enforces 𝜉𝑖 = 0 for 𝑖 = 1,… , 𝑛→ hard margin

 This is still a quadratic optimization problem and there is a unique minimum. Note, 
there is only one parameter, C.
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• data is linearly separable

• but only with a narrow margin



C = Infinity → hard margin C = 10 → soft margin
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