

Pei-Yuan Wu

Electrical Engineering Department National Taiwan University

OUT-LINE

- Review of linear classifiers
 - Linear separability
- Support Vector Machine (SVM) classifier
 - > The role of margin
 - > Optimal margin hyperplanes
 - Soft Margin SVM and Slack variables

BINARY CLASSIFICATION

• Given training data (x_i, y_i) for i = 1...N, with $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, +1\}$, learn a classifier f(x) such that

$$f(\boldsymbol{x}_i) \begin{cases} \geq 0 & \text{, if } y_i = +1 \\ < 0 & \text{, if } y_i = -1 \end{cases}$$

i.e. $y_i f(x_i) > 0$ for a correct classification.

LINEAR SEPARABILITY

Linearly separable

Not Linearly separable

LINEAR CLASSIFIERS

- A linear classifier has the form $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$
- in 2D the discriminant is a line
- *w* is the normal to the line, and b the bias
- *w* is known as the weight vector

LINEAR CLASSIFIERS

- A linear classifier has the form $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$
- in 3D the discriminant is a plane, and in n-D it is a hyperplane
- For a K-NN classifier it was necessary to `carry' the training data
- For a linear classifier, the training data is used to learn w and then discarded
- Only **w** is needed for classifying new data

THE ROLE OF MARGIN

What is the best w?

maximum margin solution: most stable under perturbations of the inputs

OPTIMAL MARGIN HYPERPLANES

- Since $w^T x + b = 0$ and $c(w^T x + b) = 0$ define the same plane, we have the freedom to choose the normalization of (w, b)
- Choose normalization such that

 $\gg w^T x_+ + b = +1$ for the positive support vectors x_+

 $\gg w^T x_- + b = -1$ for the negative support vectors x_-

SVM – OPTIMIZATION

• Learning the SVM can be formulated as an optimization:

Maximize
$$\frac{2}{\|w\|}$$
 subject to $w^T x_i + b \begin{cases} \geq 1, if y_i = +1 \\ \leq -1, if y_i = -1 \end{cases}$, for $i = 1, ..., n$

• Or equivalently

Minimize
$$\frac{1}{2} \| \boldsymbol{w} \|^2$$
 subject to $y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1$, for $i = 1, ..., n$

 This is a quadratic optimization problem subject to linear constraints and there is a unique minimum

LINEAR SEPARABILITY AGAIN: WHAT IS THE BEST W?

 the points can be linearly separated but there is a very narrow margin

 but possibly the large margin solution is better, even though one constraint is violated

In general there is a trade off between the margin and the number of mistakes on the training data

"SOFT" MARGIN SVM

• The optimization problem becomes

$$\min_{\boldsymbol{w} \in \mathbb{R}^{d}, b \in \mathbb{R}, \xi_{1}, \dots, \xi_{N} \ge 0} \frac{1}{2} \|\boldsymbol{w}\|^{2} + C \sum_{i=1}^{N} \xi_{i}$$

subject to $y_{i}(\boldsymbol{w}^{T}\boldsymbol{x}_{i} + b) \ge 1 - \xi_{i}$, for $i = 1, \dots, n$

- Every constraint can be satisfied if ξ_i is sufficiently large
- C is a regularization parameter:

> small C allows constraints to be easily ignored \rightarrow large margin

>large C makes constraints hard to ignore \rightarrow narrow margin

 \succ C = ∞ enforces ξ_i = 0 for *i* = 1, ..., *n* → hard margin

 This is still a quadratic optimization problem and there is a unique minimum. Note, there is only one parameter, C.

- data is linearly separable
- but only with a narrow margin

$C = Infinity \rightarrow hard margin$

$C = 10 \rightarrow soft margin$

